ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.07616
  4. Cited By
General Bayesian Updating and the Loss-Likelihood Bootstrap
v1v2 (latest)

General Bayesian Updating and the Loss-Likelihood Bootstrap

22 September 2017
Simon Lyddon
Chris Holmes
S. Walker
ArXiv (abs)PDFHTML

Papers citing "General Bayesian Updating and the Loss-Likelihood Bootstrap"

32 / 32 papers shown
Title
AI-Powered Bayesian Inference
AI-Powered Bayesian Inference
Veronika Rockova
Sean O'Hagan
463
0
0
26 Feb 2025
Spectral Representations for Accurate Causal Uncertainty Quantification
  with Gaussian Processes
Spectral Representations for Accurate Causal Uncertainty Quantification with Gaussian Processes
Hugh Dance
Peter Orbanz
Arthur Gretton
CML
61
1
0
18 Oct 2024
Temperature Optimization for Bayesian Deep Learning
Temperature Optimization for Bayesian Deep Learning
Kenyon Ng
Chris van der Heide
Liam Hodgkinson
Susan Wei
BDL
124
0
0
08 Oct 2024
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Masahiro Tanaka
105
2
0
25 Apr 2024
On high-dimensional classification by sparse generalized Bayesian
  logistic regression
On high-dimensional classification by sparse generalized Bayesian logistic regression
The Tien Mai
75
2
0
19 Mar 2024
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in
  Gaussian Mixture Models
BOB: Bayesian Optimized Bootstrap for Uncertainty Quantification in Gaussian Mixture Models
Santiago Marin
Bronwyn Loong
A. Westveld
75
0
0
07 Nov 2023
Robustness of Bayesian ordinal response model against outliers via
  divergence approach
Robustness of Bayesian ordinal response model against outliers via divergence approach
Tomotaka Momozaki
Tomoyuki Nakagawa
60
1
0
12 May 2023
Robustifying likelihoods by optimistically re-weighting data
Robustifying likelihoods by optimistically re-weighting data
Miheer Dewaskar
Christopher Tosh
Jeremias Knoblauch
David B. Dunson
93
6
0
19 Mar 2023
Robust and Scalable Bayesian Online Changepoint Detection
Robust and Scalable Bayesian Online Changepoint Detection
Matias Altamirano
F. Briol
Jeremias Knoblauch
77
14
0
09 Feb 2023
On approximate robust confidence distributions
On approximate robust confidence distributions
Elena Bortolato
L. Ventura
45
3
0
19 Dec 2022
Generalised Bayesian Inference for Discrete Intractable Likelihood
Generalised Bayesian Inference for Discrete Intractable Likelihood
Takuo Matsubara
Jeremias Knoblauch
F. Briol
Chris J. Oates
112
19
0
16 Jun 2022
Deep Bootstrap for Bayesian Inference
Deep Bootstrap for Bayesian Inference
Lizhen Nie
Veronika Rockova
UQCVBDL
180
3
0
30 May 2022
Cutting feedback and modularized analyses in generalized Bayesian
  inference
Cutting feedback and modularized analyses in generalized Bayesian inference
David T. Frazier
David J. Nott
92
7
0
21 Feb 2022
Robust Bayesian Inference for Simulator-based Models via the MMD
  Posterior Bootstrap
Robust Bayesian Inference for Simulator-based Models via the MMD Posterior Bootstrap
Charita Dellaporta
Jeremias Knoblauch
Theodoros Damoulas
F. Briol
88
45
0
09 Feb 2022
Asymptotics of cut distributions and robust modular inference using
  Posterior Bootstrap
Asymptotics of cut distributions and robust modular inference using Posterior Bootstrap
E. Pompe
Pierre E. Jacob
82
14
0
21 Oct 2021
Mitigating Statistical Bias within Differentially Private Synthetic Data
Mitigating Statistical Bias within Differentially Private Synthetic Data
Sahra Ghalebikesabi
H. Wilde
Jack Jewson
Arnaud Doucet
Sandra Jeanne Vollmer
Chris Holmes
SyDa
85
7
0
24 Aug 2021
Robust Generalised Bayesian Inference for Intractable Likelihoods
Robust Generalised Bayesian Inference for Intractable Likelihoods
Takuo Matsubara
Jeremias Knoblauch
François‐Xavier Briol
Chris J. Oates
UQCV
80
80
0
15 Apr 2021
Introducing prior information in Weighted Likelihood Bootstrap with
  applications to model misspecification
Introducing prior information in Weighted Likelihood Bootstrap with applications to model misspecification
E. Pompe
124
9
0
26 Mar 2021
A comparison of learning rate selection methods in generalized Bayesian
  inference
A comparison of learning rate selection methods in generalized Bayesian inference
Pei-Shien Wu
Ryan Martin
BDL
76
48
0
21 Dec 2020
Gibbs posterior concentration rates under sub-exponential type losses
Gibbs posterior concentration rates under sub-exponential type losses
Nicholas Syring
Ryan Martin
124
29
0
08 Dec 2020
Foundations of Bayesian Learning from Synthetic Data
Foundations of Bayesian Learning from Synthetic Data
H. Wilde
Jack Jewson
Sebastian J. Vollmer
Chris Holmes
87
15
0
16 Nov 2020
Robust Bayesian Inference for Discrete Outcomes with the Total Variation
  Distance
Robust Bayesian Inference for Discrete Outcomes with the Total Variation Distance
Jeremias Knoblauch
Lara Vomfell
72
7
0
26 Oct 2020
Localization Uncertainty Estimation for Anchor-Free Object Detection
Localization Uncertainty Estimation for Anchor-Free Object Detection
Youngwan Lee
Joong-won Hwang
Hyungil Kim
Kimin Yun
Yongjin Kwon
Yuseok Bae
Joungyoul Park
98
32
0
28 Jun 2020
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
104
17
0
14 Apr 2020
Gibbs posterior inference on multivariate quantiles
Gibbs posterior inference on multivariate quantiles
Indrabati Bhattacharya
Ryan Martin
128
21
0
03 Feb 2020
Robust Inference and Model Criticism Using Bagged Posteriors
Robust Inference and Model Criticism Using Bagged Posteriors
Jonathan H. Huggins
Jeffrey W. Miller
142
15
0
15 Dec 2019
Multi-resolution Multi-task Gaussian Processes
Multi-resolution Multi-task Gaussian Processes
Oliver Hamelijnck
Theodoros Damoulas
Kangrui Wang
Mark Girolami
57
38
0
19 Jun 2019
On the marginal likelihood and cross-validation
On the marginal likelihood and cross-validation
Edwin Fong
Chris Holmes
UQCV
138
111
0
21 May 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRLBDL
109
106
0
03 Apr 2019
Scalable Nonparametric Sampling from Multimodal Posteriors with the
  Posterior Bootstrap
Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap
Edwin Fong
Simon Lyddon
Chris Holmes
184
36
0
08 Feb 2019
Nonparametric learning from Bayesian models with randomized objective
  functions
Nonparametric learning from Bayesian models with randomized objective functions
Simon Lyddon
S. Walker
C. C. Holmes
OOD
127
48
0
29 Jun 2018
Bayesian Bootstraps for Massive Data
Bayesian Bootstraps for Massive Data
Andrés F. Barrientos
Víctor Pena
50
7
0
28 May 2017
1