ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1709.08480
  4. Cited By
J-MOD$^{2}$: Joint Monocular Obstacle Detection and Depth Estimation

J-MOD2^{2}2: Joint Monocular Obstacle Detection and Depth Estimation

25 September 2017
Michele Mancini
G. Costante
P. Valigi
Thomas Alessandro Ciarfuglia
    MDE
ArXivPDFHTML

Papers citing "J-MOD$^{2}$: Joint Monocular Obstacle Detection and Depth Estimation"

3 / 3 papers shown
Title
LMDepth: Lightweight Mamba-based Monocular Depth Estimation for Real-World Deployment
LMDepth: Lightweight Mamba-based Monocular Depth Estimation for Real-World Deployment
Jiahuan Long
Xin Zhou
MDE
51
0
0
02 May 2025
A Survey on RGB-D Datasets
A Survey on RGB-D Datasets
Alexandre Lopes
Roberto Souza
Hélio Pedrini
3DV
MDE
26
33
0
15 Jan 2022
Tiny Obstacle Discovery by Occlusion-Aware Multilayer Regression
Tiny Obstacle Discovery by Occlusion-Aware Multilayer Regression
Feng Xue
Anlong Ming
Yu Zhou
13
17
0
17 Nov 2021
1