Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.00017
Cited By
Hierarchical modeling of molecular energies using a deep neural network
29 September 2017
Nicholas Lubbers
Justin S. Smith
K. Barros
AI4CE
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hierarchical modeling of molecular energies using a deep neural network"
26 / 26 papers shown
Title
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
52
0
0
30 Dec 2024
FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials
Thomas Plé
Olivier Adjoua
Louis Lagardère
Jean‐Philip Piquemal
32
8
0
02 May 2024
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
28
15
0
03 Dec 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAML
AI4CE
24
21
0
03 Mar 2023
HOAX: A Hyperparameter Optimization Algorithm Explorer for Neural Networks
Albert S. Thie
M. Menger
S. Faraji
14
0
0
01 Feb 2023
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
34
6
0
29 Nov 2022
Extreme Acceleration of Graph Neural Network-based Prediction Models for Quantum Chemistry
Hatem Helal
J. Firoz
Jenna A. Bilbrey
M. M. Krell
Tom Murray
Ang Li
S. Xantheas
Sutanay Choudhury
GNN
43
5
0
25 Nov 2022
Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering
Lipichanda Goswami
Manoj Deka
Mohendra Roy
AI4CE
37
19
0
15 Sep 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
47
441
0
15 Jun 2022
EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network Accelerators
Lois Orosa
Skanda Koppula
Yaman Umuroglu
Konstantinos Kanellopoulos
Juan Gómez Luna
Michaela Blott
K. Vissers
O. Mutlu
43
4
0
04 Feb 2022
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNN
AI4CE
21
53
0
06 Dec 2021
Geometric Transformer for End-to-End Molecule Properties Prediction
Yoni Choukroun
Lior Wolf
AI4CE
ViT
25
16
0
26 Oct 2021
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
23
19
0
20 Sep 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
174
246
0
01 May 2021
A Universal Framework for Featurization of Atomistic Systems
Xiangyun Lei
A. Medford
AI4CE
21
19
0
04 Feb 2021
Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks
J. Ellis
Lenz Fiedler
G. Popoola
N. Modine
J. A. Stephens
A. Thompson
A. Cangi
S. Rajamanickam
AI4CE
22
40
0
10 Oct 2020
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
Zeren Shui
George Karypis
29
62
0
26 Sep 2020
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
AI4CE
24
214
0
15 Jul 2020
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
17
257
0
10 Jul 2020
InteractionNet: Modeling and Explaining of Noncovalent Protein-Ligand Interactions with Noncovalent Graph Neural Network and Layer-Wise Relevance Propagation
Hyeoncheol Cho
E. Lee
I. Choi
GNN
FAtt
25
4
0
12 May 2020
Automated discovery of a robust interatomic potential for aluminum
Justin S. Smith
B. Nebgen
N. Mathew
Jie Chen
Nicholas Lubbers
...
S. Tretiak
H. Nam
T. Germann
S. Fensin
K. Barros
9
78
0
10 Mar 2020
A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules
Lixue Cheng
Matthew Welborn
Anders S. Christensen
Thomas F. Miller
22
93
0
10 Jan 2019
Quantum-chemical insights from interpretable atomistic neural networks
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
AI4CE
23
31
0
27 Jun 2018
Less is more: sampling chemical space with active learning
Justin S. Smith
B. Nebgen
Nicholas Lubbers
Olexandr Isayev
A. Roitberg
25
600
0
28 Jan 2018
Metadynamics for Training Neural Network Model Chemistries: a Competitive Assessment
John E. Herr
Kun Yao
R. McIntyre
David W Toth
John A. Parkhill
18
63
0
19 Dec 2017
1