ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.00017
  4. Cited By
Hierarchical modeling of molecular energies using a deep neural network

Hierarchical modeling of molecular energies using a deep neural network

29 September 2017
Nicholas Lubbers
Justin S. Smith
K. Barros
    AI4CE
    BDL
ArXivPDFHTML

Papers citing "Hierarchical modeling of molecular energies using a deep neural network"

26 / 26 papers shown
Title
Optimal Invariant Bases for Atomistic Machine Learning
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
52
0
0
30 Dec 2024
FeNNol: an Efficient and Flexible Library for Building
  Force-field-enhanced Neural Network Potentials
FeNNol: an Efficient and Flexible Library for Building Force-field-enhanced Neural Network Potentials
Thomas Plé
Olivier Adjoua
Louis Lagardère
Jean‐Philip Piquemal
32
8
0
02 May 2024
Predicting Properties of Periodic Systems from Cluster Data: A Case
  Study of Liquid Water
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
28
15
0
03 Dec 2023
Denoise Pretraining on Nonequilibrium Molecules for Accurate and
  Transferable Neural Potentials
Denoise Pretraining on Nonequilibrium Molecules for Accurate and Transferable Neural Potentials
Yuyang Wang
Chang Xu
Zijie Li
A. Farimani
AAML
AI4CE
24
21
0
03 Mar 2023
HOAX: A Hyperparameter Optimization Algorithm Explorer for Neural
  Networks
HOAX: A Hyperparameter Optimization Algorithm Explorer for Neural Networks
Albert S. Thie
M. Menger
S. Faraji
14
0
0
01 Feb 2023
Synthetic data enable experiments in atomistic machine learning
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
34
6
0
29 Nov 2022
Extreme Acceleration of Graph Neural Network-based Prediction Models for
  Quantum Chemistry
Extreme Acceleration of Graph Neural Network-based Prediction Models for Quantum Chemistry
Hatem Helal
J. Firoz
Jenna A. Bilbrey
M. M. Krell
Tom Murray
Ang Li
S. Xantheas
Sutanay Choudhury
GNN
43
5
0
25 Nov 2022
Artificial Intelligence in Material Engineering: A review on
  applications of AI in Material Engineering
Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering
Lipichanda Goswami
Manoj Deka
Mohendra Roy
AI4CE
37
19
0
15 Sep 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
47
441
0
15 Jun 2022
EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network
  Accelerators
EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network Accelerators
Lois Orosa
Skanda Koppula
Yaman Umuroglu
Konstantinos Kanellopoulos
Juan Gómez Luna
Michaela Blott
K. Vissers
O. Mutlu
43
4
0
04 Feb 2022
Graph Neural Networks Accelerated Molecular Dynamics
Graph Neural Networks Accelerated Molecular Dynamics
Zijie Li
Kazem Meidani
Prakarsh Yadav
A. Farimani
GNN
AI4CE
21
53
0
06 Dec 2021
Geometric Transformer for End-to-End Molecule Properties Prediction
Geometric Transformer for End-to-End Molecule Properties Prediction
Yoni Choukroun
Lior Wolf
AI4CE
ViT
25
16
0
26 Oct 2021
Fast and Sample-Efficient Interatomic Neural Network Potentials for
  Molecules and Materials Based on Gaussian Moments
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
23
19
0
20 Sep 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
174
246
0
01 May 2021
A Universal Framework for Featurization of Atomistic Systems
A Universal Framework for Featurization of Atomistic Systems
Xiangyun Lei
A. Medford
AI4CE
21
19
0
04 Feb 2021
Accelerating Finite-temperature Kohn-Sham Density Functional Theory with
  Deep Neural Networks
Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks
J. Ellis
Lenz Fiedler
G. Popoola
N. Modine
J. A. Stephens
A. Thompson
A. Cangi
S. Rajamanickam
AI4CE
22
40
0
10 Oct 2020
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule
  Properties
Heterogeneous Molecular Graph Neural Networks for Predicting Molecule Properties
Zeren Shui
George Karypis
29
62
0
26 Sep 2020
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
  Atomic-Orbital Features
OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted Atomic-Orbital Features
Zhuoran Qiao
Matthew Welborn
Anima Anandkumar
F. Manby
Thomas F. Miller
AI4CE
24
214
0
15 Jul 2020
Machine learning for electronically excited states of molecules
Machine learning for electronically excited states of molecules
Julia Westermayr
P. Marquetand
17
257
0
10 Jul 2020
InteractionNet: Modeling and Explaining of Noncovalent Protein-Ligand
  Interactions with Noncovalent Graph Neural Network and Layer-Wise Relevance
  Propagation
InteractionNet: Modeling and Explaining of Noncovalent Protein-Ligand Interactions with Noncovalent Graph Neural Network and Layer-Wise Relevance Propagation
Hyeoncheol Cho
E. Lee
I. Choi
GNN
FAtt
25
4
0
12 May 2020
Automated discovery of a robust interatomic potential for aluminum
Automated discovery of a robust interatomic potential for aluminum
Justin S. Smith
B. Nebgen
N. Mathew
Jie Chen
Nicholas Lubbers
...
S. Tretiak
H. Nam
T. Germann
S. Fensin
K. Barros
9
78
0
10 Mar 2020
A Universal Density Matrix Functional from Molecular Orbital-Based
  Machine Learning: Transferability across Organic Molecules
A Universal Density Matrix Functional from Molecular Orbital-Based Machine Learning: Transferability across Organic Molecules
Lixue Cheng
Matthew Welborn
Anders S. Christensen
Thomas F. Miller
22
93
0
10 Jan 2019
Quantum-chemical insights from interpretable atomistic neural networks
Quantum-chemical insights from interpretable atomistic neural networks
Kristof T. Schütt
M. Gastegger
A. Tkatchenko
K. Müller
AI4CE
23
31
0
27 Jun 2018
Less is more: sampling chemical space with active learning
Less is more: sampling chemical space with active learning
Justin S. Smith
B. Nebgen
Nicholas Lubbers
Olexandr Isayev
A. Roitberg
25
600
0
28 Jan 2018
Metadynamics for Training Neural Network Model Chemistries: a
  Competitive Assessment
Metadynamics for Training Neural Network Model Chemistries: a Competitive Assessment
John E. Herr
Kun Yao
R. McIntyre
David W Toth
John A. Parkhill
18
63
0
19 Dec 2017
1