ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.02950
  4. Cited By
Maximum Regularized Likelihood Estimators: A General Prediction Theory
  and Applications
v1v2 (latest)

Maximum Regularized Likelihood Estimators: A General Prediction Theory and Applications

9 October 2017
Rui Zhuang
Johannes Lederer
ArXiv (abs)PDFHTML

Papers citing "Maximum Regularized Likelihood Estimators: A General Prediction Theory and Applications"

9 / 9 papers shown
Title
Extremes in High Dimensions: Methods and Scalable Algorithms
Extremes in High Dimensions: Methods and Scalable Algorithms
Johannes Lederer
M. Oesting
48
10
0
07 Mar 2023
Statistical guarantees for sparse deep learning
Statistical guarantees for sparse deep learning
Johannes Lederer
40
11
0
11 Dec 2022
Optimization Landscapes of Wide Deep Neural Networks Are Benign
Optimization Landscapes of Wide Deep Neural Networks Are Benign
Johannes Lederer
60
8
0
02 Oct 2020
Non-asymptotic Optimal Prediction Error for Growing-dimensional
  Partially Functional Linear Models
Non-asymptotic Optimal Prediction Error for Growing-dimensional Partially Functional Linear Models
Huiming Zhang
Xiaoyu Lei
62
1
0
10 Sep 2020
Prediction of Spatial Point Processes: Regularized Method with
  Out-of-Sample Guarantees
Prediction of Spatial Point Processes: Regularized Method with Out-of-Sample Guarantees
Muhammad Osama
Dave Zachariah
Petre Stoica
3DPC
15
2
0
03 Jul 2020
Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph
  Recovery
Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery
M. Laszkiewicz
Asja Fischer
Johannes Lederer
74
6
0
01 May 2020
Prediction Error Bounds for Linear Regression With the TREX
Prediction Error Bounds for Linear Regression With the TREX
Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. Müller
63
18
0
04 Jan 2018
Inference for high-dimensional instrumental variables regression
Inference for high-dimensional instrumental variables regression
David Gold
Johannes Lederer
Jing Tao
85
36
0
18 Aug 2017
Tuning parameter calibration for $\ell_1$-regularized logistic
  regression
Tuning parameter calibration for ℓ1\ell_1ℓ1​-regularized logistic regression
Wei Li
Johannes Lederer
76
13
0
01 Oct 2016
1