Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.04340
Cited By
v1
v2 (latest)
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
12 October 2017
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition"
50 / 151 papers shown
Title
Deep Probabilistic Koopman: Long-term time-series forecasting under periodic uncertainties
Alex Troy Mallen
Henning Lange
J. Nathan Kutz
AI4TS
63
8
0
10 Jun 2021
The kernel perspective on dynamic mode decomposition
Efrain Gonzalez
Moad Abudia
M. Jury
R. Kamalapurkar
Joel A. Rosenfeld
23
7
0
31 May 2021
Operator Autoencoders: Learning Physical Operations on Encoded Molecular Graphs
Willis Hoke
D. Shea
S. Casey
AI4CE
57
0
0
26 May 2021
A Differential Geometry Perspective on Orthogonal Recurrent Models
Omri Azencot
N. Benjamin Erichson
M. Ben-Chen
Michael W. Mahoney
AI4CE
48
5
0
18 Feb 2021
An Operator Theoretic Approach for Analyzing Sequence Neural Networks
Ilana D Naiman
Omri Azencot
108
11
0
15 Feb 2021
Data-driven Analysis for Understanding Team Sports Behaviors
Keisuke Fujii
AI4TS
AI4CE
71
27
0
15 Feb 2021
Noisy Recurrent Neural Networks
Soon Hoe Lim
N. Benjamin Erichson
Liam Hodgkinson
Michael W. Mahoney
93
54
0
09 Feb 2021
Meta-Learning for Koopman Spectral Analysis with Short Time-series
Tomoharu Iwata
Yoshinobu Kawahara
AI4TS
57
0
0
09 Feb 2021
Reduced operator inference for nonlinear partial differential equations
E. Qian
Ionut-Gabriel Farcas
Karen E. Willcox
AI4CE
65
39
0
29 Jan 2021
Reproducing kernel Hilbert C*-module and kernel mean embeddings
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
Fuyuta Komura
Takeshi Katsura
Yoshinobu Kawahara
35
11
0
27 Jan 2021
DeepGreen: Deep Learning of Green's Functions for Nonlinear Boundary Value Problems
Craig Gin
D. Shea
Steven L. Brunton
J. Nathan Kutz
92
90
0
31 Dec 2020
Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear Dynamics
Tomoharu Iwata
Yoshinobu Kawahara
63
12
0
11 Dec 2020
Parameterized Neural Ordinary Differential Equations: Applications to Computational Physics Problems
Kookjin Lee
E. Parish
71
68
0
28 Oct 2020
Stochastic embeddings of dynamical phenomena through variational autoencoders
C. A. García
P. Félix
J. Presedo
A. Otero
BDL
58
2
0
13 Oct 2020
Derivative-Based Koopman Operators for Real-Time Control of Robotic Systems
Giorgos Mamakoukas
Maria L. Castaño
Xiaobo Tan
Todd Murphey
71
92
0
12 Oct 2020
Transformers for Modeling Physical Systems
N. Geneva
N. Zabaras
AI4CE
119
146
0
04 Oct 2020
Analyzing Koopman approaches to physics-informed machine learning for long-term sea-surface temperature forecasting
Julian Rice
Wenwei Xu
Andrew August
50
10
0
15 Sep 2020
OnsagerNet: Learning Stable and Interpretable Dynamics using a Generalized Onsager Principle
Haijun Yu
Xinyuan Tian
Weinan E
Qianxiao Li
AI4CE
112
44
0
06 Sep 2020
Deep Neural Networks for Nonlinear Model Order Reduction of Unsteady Flows
Hamidreza Eivazi
H. Veisi
M. H. Naderi
V. Esfahanian
AI4CE
94
173
0
02 Jul 2020
Learning Dynamics Models with Stable Invariant Sets
Naoya Takeishi
Yoshinobu Kawahara
62
18
0
16 Jun 2020
Deep Adversarial Koopman Model for Reaction-Diffusion systems
K. Balakrishnan
Devesh Upadhyay
70
5
0
09 Jun 2020
Optimizing Neural Networks via Koopman Operator Theory
Akshunna S. Dogra
William T. Redman
78
51
0
03 Jun 2020
Hybrid Scheme of Kinematic Analysis and Lagrangian Koopman Operator Analysis for Short-term Precipitation Forecasting
Shitao Zheng
T. Miyamoto
K. Iwanami
S. Shimizu
Ryohei Kato
71
3
0
03 Jun 2020
Learning Stable Models for Prediction and Control
Giorgos Mamakoukas
Ian Abraham
Todd Murphey
97
39
0
08 May 2020
Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence
Hamidreza Eivazi
L. Guastoni
P. Schlatter
Hossein Azizpour
Ricardo Vinuesa
AI4CE
60
7
0
01 May 2020
From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction
Henning Lange
Steven L. Brunton
N. Kutz
AI4TS
89
80
0
01 Apr 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
158
415
0
10 Mar 2020
Bayesian System ID: Optimal management of parameter, model, and measurement uncertainty
Nicholas Galioto
Alex Gorodetsky
63
32
0
04 Mar 2020
Forecasting Sequential Data using Consistent Koopman Autoencoders
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
206
152
0
04 Mar 2020
Analysis via Orthonormal Systems in Reproducing Kernel Hilbert
C
∗
C^*
C
∗
-Modules and Applications
Yuka Hashimoto
Isao Ishikawa
Masahiro Ikeda
Fuyuta Komura
Takeshi Katsura
Yoshinobu Kawahara
17
2
0
02 Mar 2020
Sparsity-promoting algorithms for the discovery of informative Koopman invariant subspaces
Shaowu Pan
Nicholas Arnold-Medabalimi
Karthik Duraisamy
76
48
0
25 Feb 2020
Deep reconstruction of strange attractors from time series
W. Gilpin
AI4TS
53
3
0
14 Feb 2020
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
117
599
0
13 Jan 2020
Composition operators on reproducing kernel Hilbert spaces with analytic positive definite functions
Masahiro Ikeda
Isao Ishikawa
Y. Sawano
CoGe
36
16
0
27 Nov 2019
Deep Learning Models for Global Coordinate Transformations that Linearize PDEs
Craig Gin
Bethany Lusch
Steven L. Brunton
J. Nathan Kutz
83
41
0
07 Nov 2019
Learning Compositional Koopman Operators for Model-Based Control
Yunzhu Li
Hao He
Jiajun Wu
Dina Katabi
Antonio Torralba
112
121
0
18 Oct 2019
Towards Scalable Koopman Operator Learning: Convergence Rates and A Distributed Learning Algorithm
Zhiyuan Liu
Guohui Ding
Lijun Chen
Enoch Yeung
25
3
0
30 Sep 2019
A unified sparse optimization framework to learn parsimonious physics-informed models from data
Kathleen P. Champion
P. Zheng
Aleksandr Aravkin
Steven L. Brunton
J. Nathan Kutz
AI4CE
76
119
0
25 Jun 2019
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
Shaowu Pan
Karthik Duraisamy
140
138
0
09 Jun 2019
Machine Learning for Fluid Mechanics
Steven Brunton
B. R. Noack
Petros Koumoutsakos
AI4CE
PINN
103
2,146
0
27 May 2019
Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction
N. Benjamin Erichson
Michael Muehlebach
Michael W. Mahoney
AI4CE
PINN
75
141
0
26 May 2019
Time-varying Autoregression with Low Rank Tensors
K. Harris
Aleksandr Aravkin
Rajesh P. N. Rao
Bingni W. Brunton
AI4TS
80
20
0
21 May 2019
Physically-interpretable classification of biological network dynamics for complex collective motions
Keisuke Fujii
Naoya Takeishi
Motokazu Hojo
Yuki Inaba
Yoshinobu Kawahara
110
11
0
13 May 2019
Deep Variational Koopman Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control
Jeremy Morton
F. Witherden
Mykel J Kochenderfer
85
47
0
26 Feb 2019
Dynamic mode decomposition in vector-valued reproducing kernel Hilbert spaces for extracting dynamical structure among observables
Keisuke Fujii
Yoshinobu Kawahara
73
31
0
30 Aug 2018
Discovering physical concepts with neural networks
Raban Iten
Tony Metger
H. Wilming
L. D. Rio
R. Renner
PINN
AI4CE
127
391
0
26 Jul 2018
Deep Dynamical Modeling and Control of Unsteady Fluid Flows
Jeremy Morton
F. Witherden
A. Jameson
Mykel J. Kochenderfer
AI4CE
79
165
0
18 May 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
92
1,268
0
27 Dec 2017
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
Samuel E. Otto
C. Rowley
AI4CE
86
328
0
04 Dec 2017
Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems
Enoch Yeung
Soumya Kundu
Nathan Oken Hodas
AI4CE
85
387
0
22 Aug 2017
Previous
1
2
3
4
Next