ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.05050
  4. Cited By
Learning Independent Features with Adversarial Nets for Non-linear ICA

Learning Independent Features with Adversarial Nets for Non-linear ICA

13 October 2017
Philemon Brakel
Yoshua Bengio
    OOD
    CML
ArXivPDFHTML

Papers citing "Learning Independent Features with Adversarial Nets for Non-linear ICA"

11 / 11 papers shown
Title
Novelty Detection in Time Series via Weak Innovations Representation: A
  Deep Learning Approach
Novelty Detection in Time Series via Weak Innovations Representation: A Deep Learning Approach
Xinyi Wang
Mei-jen Lee
Qing Zhao
Lang Tong
BDL
AI4TS
23
0
0
24 Oct 2022
Variance Covariance Regularization Enforces Pairwise Independence in
  Self-Supervised Representations
Variance Covariance Regularization Enforces Pairwise Independence in Self-Supervised Representations
Grégoire Mialon
Randall Balestriero
Yann LeCun
29
9
0
29 Sep 2022
CLIP-Lite: Information Efficient Visual Representation Learning with
  Language Supervision
CLIP-Lite: Information Efficient Visual Representation Learning with Language Supervision
A. Shrivastava
Ramprasaath R. Selvaraju
Nikhil Naik
Vicente Ordonez
VLM
CLIP
25
6
0
14 Dec 2021
PluGeN: Multi-Label Conditional Generation From Pre-Trained Models
PluGeN: Multi-Label Conditional Generation From Pre-Trained Models
Maciej Wołczyk
Magdalena Proszewska
Lukasz Maziarka
Maciej Ziȩba
Patryk Wielopolski
Rafał Kurczab
Marek Śmieja
DRL
27
5
0
18 Sep 2021
AID-Purifier: A Light Auxiliary Network for Boosting Adversarial Defense
AID-Purifier: A Light Auxiliary Network for Boosting Adversarial Defense
Duhun Hwang
Eunjung Lee
Wonjong Rhee
AAML
167
14
0
14 Jul 2021
A Deep Learning Approach to Anomaly Sequence Detection for
  High-Resolution Monitoring of Power Systems
A Deep Learning Approach to Anomaly Sequence Detection for High-Resolution Monitoring of Power Systems
Kursat Rasim Mestav
Xinyi Wang
Lang Tong
AI4TS
15
27
0
09 Dec 2020
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
41
44
0
18 Apr 2020
A Critical View of the Structural Causal Model
A Critical View of the Structural Causal Model
Tomer Galanti
Ofir Nabati
Lior Wolf
CML
21
9
0
23 Feb 2020
Biphasic Learning of GANs for High-Resolution Image-to-Image Translation
Biphasic Learning of GANs for High-Resolution Image-to-Image Translation
Jie Cao
Huaibo Huang
Yi Li
Jingtuo Liu
R. He
Zhenan Sun
GAN
24
4
0
14 Apr 2019
Time Series Source Separation using Dynamic Mode Decomposition
Time Series Source Separation using Dynamic Mode Decomposition
Arvind Prasadan
R. Nadakuditi
AI4TS
19
6
0
04 Mar 2019
Relevance Factor VAE: Learning and Identifying Disentangled Factors
Relevance Factor VAE: Learning and Identifying Disentangled Factors
Minyoung Kim
Yuting Wang
Pritish Sahu
Vladimir Pavlovic
CoGe
CML
DRL
16
38
0
05 Feb 2019
1