ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.05053
  4. Cited By
Automated Scalable Bayesian Inference via Hilbert Coresets

Automated Scalable Bayesian Inference via Hilbert Coresets

13 October 2017
Trevor Campbell
Tamara Broderick
ArXivPDFHTML

Papers citing "Automated Scalable Bayesian Inference via Hilbert Coresets"

24 / 24 papers shown
Title
Predictive Coresets
Predictive Coresets
Bernardo Flores
57
0
0
08 Feb 2025
Structural-Entropy-Based Sample Selection for Efficient and Effective Learning
Structural-Entropy-Based Sample Selection for Efficient and Effective Learning
Tianchi Xie
Jiangning Zhu
Guozu Ma
Minzhi Lin
Wei Chen
Weikai Yang
Shixia Liu
33
0
0
03 Oct 2024
Coreset Markov Chain Monte Carlo
Coreset Markov Chain Monte Carlo
Naitong Chen
Trevor Campbell
32
4
0
25 Oct 2023
Can Public Large Language Models Help Private Cross-device Federated
  Learning?
Can Public Large Language Models Help Private Cross-device Federated Learning?
Wei Ping
Yibo Jacky Zhang
Yuan Cao
Bo-wen Li
H. B. McMahan
Sewoong Oh
Zheng Xu
Manzil Zaheer
FedML
29
37
0
20 May 2023
Machine Learning and the Future of Bayesian Computation
Machine Learning and the Future of Bayesian Computation
Steven Winter
Trevor Campbell
Lizhen Lin
Sanvesh Srivastava
David B. Dunson
TPM
47
4
0
21 Apr 2023
Frugal Reinforcement-based Active Learning
Frugal Reinforcement-based Active Learning
Sebastien Deschamps
H. Sahbi
16
0
0
09 Dec 2022
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel
  Recombination
Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination
Masaki Adachi
Satoshi Hayakawa
Martin Jørgensen
Harald Oberhauser
Michael A. Osborne
22
20
0
09 Jun 2022
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian
  Inference, Active Learning, and Active Sampling
Marginal and Joint Cross-Entropies & Predictives for Online Bayesian Inference, Active Learning, and Active Sampling
Andreas Kirsch
Jannik Kossen
Y. Gal
UQCV
BDL
58
3
0
18 May 2022
Sampling with replacement vs Poisson sampling: a comparative study in
  optimal subsampling
Sampling with replacement vs Poisson sampling: a comparative study in optimal subsampling
Jing Wang
Jiahui Zou
Haiying Wang
45
16
0
17 May 2022
Reinforcement-based frugal learning for satellite image change detection
Reinforcement-based frugal learning for satellite image change detection
Sebastien Deschamps
H. Sahbi
30
1
0
22 Mar 2022
Frugal Learning of Virtual Exemplars for Label-Efficient Satellite Image
  Change Detection
Frugal Learning of Virtual Exemplars for Label-Efficient Satellite Image Change Detection
H. Sahbi
Sebastien Deschamps
33
0
0
22 Mar 2022
Bayesian inference via sparse Hamiltonian flows
Bayesian inference via sparse Hamiltonian flows
Na Chen
Zuheng Xu
Trevor Campbell
35
14
0
11 Mar 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
Active learning for interactive satellite image change detection
Active learning for interactive satellite image change detection
H. Sahbi
Sebastien Deschamps
Andrei Stoian
42
6
0
08 Oct 2021
Data Summarization via Bilevel Optimization
Data Summarization via Bilevel Optimization
Zalan Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
30
8
0
26 Sep 2021
One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning
One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning
Chaosheng Dong
Xiaojie Jin
Weihao Gao
Yijia Wang
Hongyi Zhang
Xiang Wu
Jianchao Yang
Xiaobing Liu
28
5
0
27 Apr 2021
Risk Bounds for Learning via Hilbert Coresets
Risk Bounds for Learning via Hilbert Coresets
Spencer Douglas
Piyush Kumar
R. Prasanth
24
0
0
29 Mar 2021
Coresets via Bilevel Optimization for Continual Learning and Streaming
Coresets via Bilevel Optimization for Continual Learning and Streaming
Zalan Borsos
Mojmír Mutný
Andreas Krause
CLL
38
226
0
06 Jun 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Selection via Proxy: Efficient Data Selection for Deep Learning
Selection via Proxy: Efficient Data Selection for Deep Learning
Cody Coleman
Christopher Yeh
Stephen Mussmann
Baharan Mirzasoleiman
Peter Bailis
Percy Liang
J. Leskovec
Matei A. Zaharia
26
328
0
26 Jun 2019
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
35
15
0
26 Jun 2018
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Bayesian Coreset Construction via Greedy Iterative Geodesic Ascent
Trevor Campbell
Tamara Broderick
25
136
0
05 Feb 2018
Likelihood Inflating Sampling Algorithm
Likelihood Inflating Sampling Algorithm
R. Entezari
Radu V. Craiu
Jeffrey S. Rosenthal
50
22
0
06 May 2016
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,267
0
09 Jun 2012
1