ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.05578
  4. Cited By
Fair Kernel Learning

Fair Kernel Learning

16 October 2017
Adrián Pérez-Suay
Valero Laparra
Gonzalo Mateo-García
Jordi Munoz-Marí
L. Gómez-Chova
Gustau Camps-Valls
    FaML
ArXiv (abs)PDFHTML

Papers citing "Fair Kernel Learning"

36 / 36 papers shown
Title
fairret: a Framework for Differentiable Fairness Regularization Terms
fairret: a Framework for Differentiable Fairness Regularization Terms
Maarten Buyl
Marybeth Defrance
T. D. Bie
FedML
71
4
0
26 Oct 2023
Mean Parity Fair Regression in RKHS
Mean Parity Fair Regression in RKHS
Shaokui Wei
Jiayin Liu
Bing Li
H. Zha
56
3
0
21 Feb 2023
Returning The Favour: When Regression Benefits From Probabilistic Causal
  Knowledge
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
93
0
0
26 Jan 2023
Fairness-aware Regression Robust to Adversarial Attacks
Fairness-aware Regression Robust to Adversarial Attacks
Yulu Jin
Lifeng Lai
FaMLOOD
83
4
0
04 Nov 2022
Fairness Reprogramming
Fairness Reprogramming
Guanhua Zhang
Yihua Zhang
Yang Zhang
Wenqi Fan
Qing Li
Sijia Liu
Shiyu Chang
AAML
213
40
0
21 Sep 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaMLAI4CE
109
177
0
14 Jul 2022
Fair Generalized Linear Models with a Convex Penalty
Fair Generalized Linear Models with a Convex Penalty
Hyungrok Do
Preston J. Putzel
Axel Martin
Padhraic Smyth
Judy Zhong
FaML
68
14
0
18 Jun 2022
Selective Regression Under Fairness Criteria
Selective Regression Under Fairness Criteria
Abhin Shah
Yuheng Bu
Joshua K. Lee
Subhro Das
Yikang Shen
P. Sattigeri
G. Wornell
114
28
0
28 Oct 2021
RKHS-SHAP: Shapley Values for Kernel Methods
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
83
20
0
18 Oct 2021
On Characterizing the Trade-off in Invariant Representation Learning
On Characterizing the Trade-off in Invariant Representation Learning
Bashir Sadeghi
Sepehr Dehdashtian
Vishnu Boddeti
113
7
0
08 Sep 2021
Learning Fair Canonical Polyadical Decompositions using a Kernel
  Independence Criterion
Learning Fair Canonical Polyadical Decompositions using a Kernel Independence Criterion
Kevin Kim
Alex Gittens
44
2
0
27 Apr 2021
Towards a Collective Agenda on AI for Earth Science Data Analysis
Towards a Collective Agenda on AI for Earth Science Data Analysis
D. Tuia
R. Roscher
Jan Dirk Wegner
Nathan Jacobs
Xiaoxiang Zhu
Gustau Camps-Valls
AI4CE
80
70
0
11 Apr 2021
A Stochastic Optimization Framework for Fair Risk Minimization
A Stochastic Optimization Framework for Fair Risk Minimization
Andrew Lowy
Sina Baharlouei
Rakesh Pavan
Meisam Razaviyayn
Ahmad Beirami
FaML
69
21
0
24 Feb 2021
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
324
500
0
31 Dec 2020
Living in the Physics and Machine Learning Interplay for Earth
  Observation
Living in the Physics and Machine Learning Interplay for Earth Observation
Gustau Camps-Valls
D. Svendsen
Jordi Cortés-Andrés
Álvaro Moreno-Martínez
Adrián Pérez-Suay
J. Adsuara
I. Martín
M. Piles
Jordi Munoz-Marí
Luca Martino
PINNAI4CE
39
6
0
18 Oct 2020
Fairness in Machine Learning: A Survey
Fairness in Machine Learning: A Survey
Simon Caton
C. Haas
FaML
110
654
0
04 Oct 2020
Fair Meta-Learning For Few-Shot Classification
Fair Meta-Learning For Few-Shot Classification
Chengli Zhao
Changbin Li
Jincheng Li
Feng Chen
FaML
65
26
0
23 Sep 2020
Fair Regression with Wasserstein Barycenters
Fair Regression with Wasserstein Barycenters
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
97
108
0
12 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaMLFedML
69
40
0
26 May 2020
Spectral Ranking with Covariates
Spectral Ranking with Covariates
Siu Lun Chau
Ning Zhang
Dino Sejdinovic
49
9
0
08 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAMLXAI
118
380
0
30 Apr 2020
Deontological Ethics By Monotonicity Shape Constraints
Deontological Ethics By Monotonicity Shape Constraints
S. Wang
Maya R. Gupta
69
21
0
31 Jan 2020
Kernel Dependence Regularizers and Gaussian Processes with Applications
  to Algorithmic Fairness
Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness
Zhu Li
Adrián Pérez-Suay
Gustau Camps-Valls
Dino Sejdinovic
FaML
104
22
0
11 Nov 2019
Optimization Hierarchy for Fair Statistical Decision Problems
Optimization Hierarchy for Fair Statistical Decision Problems
A. Aswani
Matt Olfat
58
3
0
18 Oct 2019
A Distributed Fair Machine Learning Framework with Private Demographic
  Data Protection
A Distributed Fair Machine Learning Framework with Private Demographic Data Protection
Hui Hu
Yijun Liu
Zhen Wang
Chao Lan
FaMLFedML
86
26
0
17 Sep 2019
Tackling Algorithmic Bias in Neural-Network Classifiers using
  Wasserstein-2 Regularization
Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
95
21
0
15 Aug 2019
Fair Kernel Regression via Fair Feature Embedding in Kernel Space
Fair Kernel Regression via Fair Feature Embedding in Kernel Space
Austin Okray
Hui Hu
Chao Lan
FaML
80
4
0
04 Jul 2019
Rényi Fair Inference
Rényi Fair Inference
Sina Baharlouei
Maher Nouiehed
Ahmad Beirami
Meisam Razaviyayn
FaML
66
67
0
28 Jun 2019
Pairwise Fairness for Ranking and Regression
Pairwise Fairness for Ranking and Regression
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
S. Wang
98
115
0
12 Jun 2019
Fair Regression: Quantitative Definitions and Reduction-based Algorithms
Fair Regression: Quantitative Definitions and Reduction-based Algorithms
Alekh Agarwal
Miroslav Dudík
Zhiwei Steven Wu
FaML
82
248
0
30 May 2019
Knowledge-Based Regularization in Generative Modeling
Knowledge-Based Regularization in Generative Modeling
Naoya Takeishi
Yoshinobu Kawahara
GAN
49
0
0
06 Feb 2019
General Fair Empirical Risk Minimization
General Fair Empirical Risk Minimization
L. Oneto
Michele Donini
Massimiliano Pontil
FaML
106
40
0
29 Jan 2019
Fairness risk measures
Fairness risk measures
Robert C. Williamson
A. Menon
FaML
163
142
0
24 Jan 2019
Taking Advantage of Multitask Learning for Fair Classification
Taking Advantage of Multitask Learning for Fair Classification
L. Oneto
Michele Donini
Amon Elders
Massimiliano Pontil
FaML
91
60
0
19 Oct 2018
Discovering Fair Representations in the Data Domain
Discovering Fair Representations in the Data Domain
Novi Quadrianto
V. Sharmanska
Oliver Thomas
78
3
0
15 Oct 2018
Empirical Risk Minimization under Fairness Constraints
Empirical Risk Minimization under Fairness Constraints
Michele Donini
L. Oneto
Shai Ben-David
John Shawe-Taylor
Massimiliano Pontil
FaML
86
445
0
23 Feb 2018
1