ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.06202
  4. Cited By
Deep Gaussian Covariance Network
v1v2 (latest)

Deep Gaussian Covariance Network

17 October 2017
K. Cremanns
D. Roos
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Gaussian Covariance Network"

11 / 11 papers shown
Title
Intelligent Optimization and Machine Learning Algorithms for Structural
  Anomaly Detection using Seismic Signals
Intelligent Optimization and Machine Learning Algorithms for Structural Anomaly Detection using Seismic Signals
M. Trapp
Can Bogoclu
Tamara Nestorović
D. Roos
55
14
0
18 Jan 2024
Object Location Prediction in Real-time using LSTM Neural Network and
  Polynomial Regression
Object Location Prediction in Real-time using LSTM Neural Network and Polynomial Regression
Petar Stojković
Predrag Tadić
13
1
0
23 Nov 2023
DYNAMITE: Dynamic Interplay of Mini-Batch Size and Aggregation Frequency
  for Federated Learning with Static and Streaming Dataset
DYNAMITE: Dynamic Interplay of Mini-Batch Size and Aggregation Frequency for Federated Learning with Static and Streaming Dataset
Weijie Liu
Xiaoxi Zhang
Jingpu Duan
Carlee Joe-Wong
Zhi Zhou
Xu Chen
73
9
0
20 Oct 2023
Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit
Gradient and Uncertainty Enhanced Sequential Sampling for Global Fit
Sven Lämmle
Can Bogoclu
K. Cremanns
D. Roos
54
5
0
29 Sep 2023
Neural Bayes estimators for censored inference with peaks-over-threshold
  models
Neural Bayes estimators for censored inference with peaks-over-threshold models
J. Richards
Matthew Sainsbury-Dale
A. Zammit‐Mangion
Raphael Huser
433
10
0
27 Jun 2023
Fast parameter estimation of Generalized Extreme Value distribution
  using Neural Networks
Fast parameter estimation of Generalized Extreme Value distribution using Neural Networks
Sweta Rai
Alexis L Hoffman
S. Lahiri
D. Nychka
S. Sain
S. Bandyopadhyay
411
9
0
07 May 2023
Neural Networks for Parameter Estimation in Intractable Models
Neural Networks for Parameter Estimation in Intractable Models
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
BDL
394
54
0
29 Jul 2021
Calibrated simplex-mapping classification
Calibrated simplex-mapping classification
R. Heese
J. Schmid
Michal Walczak
Michael Bortz
57
3
0
04 Mar 2021
Fast covariance parameter estimation of spatial Gaussian process models
  using neural networks
Fast covariance parameter estimation of spatial Gaussian process models using neural networks
Florian Gerber
D. Nychka
309
38
0
30 Dec 2020
Deep Latent-Variable Kernel Learning
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
59
8
0
18 May 2020
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
136
697
0
03 Jul 2018
1