ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.07406
  4. Cited By
First-order Methods Almost Always Avoid Saddle Points

First-order Methods Almost Always Avoid Saddle Points

20 October 2017
J. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
    ODL
ArXivPDFHTML

Papers citing "First-order Methods Almost Always Avoid Saddle Points"

5 / 5 papers shown
Title
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
30
0
0
08 Feb 2024
Stochastic noise can be helpful for variational quantum algorithms
Stochastic noise can be helpful for variational quantum algorithms
Junyu Liu
Frederik Wilde
A. A. Mele
Liang Jiang
Jens Eisert
Jens Eisert
8
33
0
13 Oct 2022
Training Generative Adversarial Networks with Adaptive Composite
  Gradient
Training Generative Adversarial Networks with Adaptive Composite Gradient
Huiqing Qi
Fang Li
Shengli Tan
Xiangyun Zhang
GAN
10
3
0
10 Nov 2021
Differentiable Game Mechanics
Differentiable Game Mechanics
Alistair Letcher
David Balduzzi
S. Racanière
James Martens
Jakob N. Foerster
K. Tuyls
T. Graepel
16
78
0
13 May 2019
The Loss Surfaces of Multilayer Networks
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
175
1,182
0
30 Nov 2014
1