Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.07406
Cited By
First-order Methods Almost Always Avoid Saddle Points
20 October 2017
J. Lee
Ioannis Panageas
Georgios Piliouras
Max Simchowitz
Michael I. Jordan
Benjamin Recht
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"First-order Methods Almost Always Avoid Saddle Points"
5 / 5 papers shown
Title
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
30
0
0
08 Feb 2024
Stochastic noise can be helpful for variational quantum algorithms
Junyu Liu
Frederik Wilde
A. A. Mele
Liang Jiang
Jens Eisert
Jens Eisert
8
33
0
13 Oct 2022
Training Generative Adversarial Networks with Adaptive Composite Gradient
Huiqing Qi
Fang Li
Shengli Tan
Xiangyun Zhang
GAN
10
3
0
10 Nov 2021
Differentiable Game Mechanics
Alistair Letcher
David Balduzzi
S. Racanière
James Martens
Jakob N. Foerster
K. Tuyls
T. Graepel
16
78
0
13 May 2019
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
175
1,182
0
30 Nov 2014
1