Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.09435
Cited By
Malware Detection by Eating a Whole EXE
25 October 2017
Edward Raff
Jon Barker
Jared Sylvester
Robert Brandon
Bryan Catanzaro
Charles K. Nicholas
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Malware Detection by Eating a Whole EXE"
48 / 48 papers shown
Title
Recent Advances in Malware Detection: Graph Learning and Explainability
Hossein Shokouhinejad
Roozbeh Razavi-Far
Hesamodin Mohammadian
Mahdi Rabbani
Samuel Ansong
Griffin Higgins
Ali Ghorbani
AAML
70
2
0
14 Feb 2025
Reinforcement Learning for an Efficient and Effective Malware Investigation during Cyber Incident Response
Dipo Dunsin
M. C. Ghanem
Karim Ouazzane
Vassil T. Vassilev
40
5
0
08 Jan 2025
SoK: Leveraging Transformers for Malware Analysis
Pradip Kunwar
Kshitiz Aryal
Maanak Gupta
Mahmoud Abdelsalam
Elisa Bertino
90
0
0
27 May 2024
SLIFER: Investigating Performance and Robustness of Malware Detection Pipelines
Andrea Ponte
Dmitrijs Trizna
Luca Demetrio
Battista Biggio
Ivan Tesfai Ogbu
Fabio Roli
41
0
0
23 May 2024
EGAN: Evolutional GAN for Ransomware Evasion
Daniel Commey
Benjamin Appiah
B. K. Frimpong
Isaac Osei
Ebenezer N. A. Hammond
Garth V. Crosby
AAML
GAN
24
0
0
20 May 2024
Updating Windows Malware Detectors: Balancing Robustness and Regression against Adversarial EXEmples
M. Kozák
Luca Demetrio
Dmitrijs Trizna
Fabio Roli
AAML
29
0
0
04 May 2024
Layered Uploading for Quantum Convolutional Neural Networks
Grégoire Barrué
Tony Quertier
Orlane Zang
89
0
0
15 Apr 2024
High-resolution Image-based Malware Classification using Multiple Instance Learning
Tim Peters
H. Farhat
12
0
0
21 Nov 2023
Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance
Savino Dambra
Yufei Han
Simone Aonzo
Platon Kotzias
Antonino Vitale
Juan Caballero
Davide Balzarotti
Leyla Bilge
14
23
0
27 Jul 2023
Exploring the Vulnerabilities of Machine Learning and Quantum Machine Learning to Adversarial Attacks using a Malware Dataset: A Comparative Analysis
Mst. Shapna Akter
Hossain Shahriar
Iysa Iqbal
M. Hossain
M. A. Karim
Victor A. Clincy
R. Voicu
AAML
18
8
0
31 May 2023
Feature Engineering Using File Layout for Malware Detection
Jeongwoo Kim
Eun-Sun Cho
Joon-Young Paik
11
1
0
05 Apr 2023
Automated Machine Learning for Deep Learning based Malware Detection
Austin R. Brown
Maanak Gupta
Mahmoud Abdelsalam
30
36
0
03 Mar 2023
PAD: Towards Principled Adversarial Malware Detection Against Evasion Attacks
Deqiang Li
Shicheng Cui
Yun Li
Jia Xu
Fu Xiao
Shouhuai Xu
AAML
48
18
0
22 Feb 2023
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
Zhuoqun Huang
Neil G. Marchant
Keane Lucas
Lujo Bauer
O. Ohrimenko
Benjamin I. P. Rubinstein
AAML
24
15
0
31 Jan 2023
Machine Learning for Detecting Malware in PE Files
Collin Connors
Dilip Sarkar
6
6
0
12 Dec 2022
Transformers for End-to-End InfoSec Tasks: A Feasibility Study
Ethan M. Rudd
Mohammad Saidur Rahman
Philip Tully
19
5
0
05 Dec 2022
Unsafe's Betrayal: Abusing Unsafe Rust in Binary Reverse Engineering via Machine Learning
Sangdon Park
Xiang Cheng
Taesoo Kim
27
1
0
31 Oct 2022
Multi-view Representation Learning from Malware to Defend Against Adversarial Variants
J. Hu
Mohammadreza Ebrahimi
Weifeng Li
Xin Li
Hsinchun Chen
AAML
13
2
0
25 Oct 2022
IvySyn: Automated Vulnerability Discovery in Deep Learning Frameworks
Neophytos Christou
Di Jin
Vaggelis Atlidakis
Baishakhi Ray
V. Kemerlis
24
13
0
29 Sep 2022
Orchestrating Collaborative Cybersecurity: A Secure Framework for Distributed Privacy-Preserving Threat Intelligence Sharing
J. Troncoso-Pastoriza
Alain Mermoud
Romain Bouyé
Francesco Marino
Jean-Philippe Bossuat
Vincent Lenders
Jean-Pierre Hubaux
21
3
0
06 Sep 2022
Explainable Artificial Intelligence Applications in Cyber Security: State-of-the-Art in Research
Zhibo Zhang
H. A. Hamadi
Ernesto Damiani
C. Yeun
Fatma Taher
AAML
29
148
0
31 Aug 2022
Combining AI and AM - Improving Approximate Matching through Transformer Networks
Frieder Uhlig
Lukas Struppek
Dominik Hintersdorf
Thomas Gobel
Harald Baier
Kristian Kersting
16
7
0
24 Aug 2022
I Know What You Trained Last Summer: A Survey on Stealing Machine Learning Models and Defences
Daryna Oliynyk
Rudolf Mayer
Andreas Rauber
39
106
0
16 Jun 2022
Fusing Feature Engineering and Deep Learning: A Case Study for Malware Classification
Daniel Gibert
Carles Mateu
Jordi Planes
Quan Le
AAML
25
48
0
12 Jun 2022
Marvolo: Programmatic Data Augmentation for Practical ML-Driven Malware Detection
Michael D. Wong
Edward Raff
James Holt
Ravi Netravali
21
2
0
07 Jun 2022
Adversarial Attacks against Windows PE Malware Detection: A Survey of the State-of-the-Art
Xiang Ling
Lingfei Wu
Jiangyu Zhang
Zhenqing Qu
Wei Deng
...
Chunming Wu
S. Ji
Tianyue Luo
Jingzheng Wu
Yanjun Wu
AAML
28
72
0
23 Dec 2021
Single-Shot Black-Box Adversarial Attacks Against Malware Detectors: A Causal Language Model Approach
J. Hu
Mohammadreza Ebrahimi
Hsinchun Chen
AAML
14
11
0
03 Dec 2021
A Comparison of State-of-the-Art Techniques for Generating Adversarial Malware Binaries
P. Dasgupta
Zachary Osman
AAML
28
2
0
22 Nov 2021
EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box Android Malware Detection
Hamid Bostani
Veelasha Moonsamy
AAML
30
50
0
07 Oct 2021
Leveraging Uncertainty for Improved Static Malware Detection Under Extreme False Positive Constraints
A. Nguyen
Edward Raff
Charles K. Nicholas
James Holt
33
21
0
09 Aug 2021
secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python
Luca Demetrio
Battista Biggio
AAML
35
11
0
26 Apr 2021
PalmTree: Learning an Assembly Language Model for Instruction Embedding
Xuezixiang Li
Qu Yu
Heng Yin
21
143
0
21 Jan 2021
Generating End-to-End Adversarial Examples for Malware Classifiers Using Explainability
Ishai Rosenberg
Shai Meir
J. Berrebi
I. Gordon
Guillaume Sicard
Eli David
AAML
SILM
9
25
0
28 Sep 2020
Malicious Network Traffic Detection via Deep Learning: An Information Theoretic View
Erick Galinkin
AAML
13
0
0
16 Sep 2020
Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection
Luca Demetrio
Scott E. Coull
Battista Biggio
Giovanni Lagorio
A. Armando
Fabio Roli
AAML
19
59
0
17 Aug 2020
A Survey of Machine Learning Methods and Challenges for Windows Malware Classification
Edward Raff
Charles K. Nicholas
AAML
24
54
0
15 Jun 2020
Functionality-preserving Black-box Optimization of Adversarial Windows Malware
Luca Demetrio
Battista Biggio
Giovanni Lagorio
Fabio Roli
A. Armando
AAML
15
135
0
30 Mar 2020
Explanation-Guided Backdoor Poisoning Attacks Against Malware Classifiers
Giorgio Severi
J. Meyer
Scott E. Coull
Alina Oprea
AAML
SILM
16
18
0
02 Mar 2020
How to 0wn NAS in Your Spare Time
Sanghyun Hong
Michael Davinroy
Yigitcan Kaya
Dana Dachman-Soled
Tudor Dumitras
25
36
0
17 Feb 2020
MDEA: Malware Detection with Evolutionary Adversarial Learning
Xiruo Wang
Risto Miikkulainen
AAML
9
15
0
09 Feb 2020
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
Keane Lucas
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
S. Shintre
AAML
31
64
0
19 Dec 2019
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
26
68
0
06 Nov 2019
ScriptNet: Neural Static Analysis for Malicious JavaScript Detection
Jack W. Stokes
Rakshit Agrawal
Geoff McDonald
Matthew J. Hausknecht
11
11
0
01 Apr 2019
Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries
Luca Demetrio
Battista Biggio
Giovanni Lagorio
Fabio Roli
A. Armando
AAML
17
128
0
11 Jan 2019
Exploring Adversarial Examples in Malware Detection
Octavian Suciu
Scott E. Coull
Jeffrey Johns
AAML
13
187
0
18 Oct 2018
Deep learning at the shallow end: Malware classification for non-domain experts
Quan Le
Oisín Boydell
Brian Mac Namee
Mark Scanlon
63
171
0
22 Jul 2018
Non-Negative Networks Against Adversarial Attacks
William Fleshman
Edward Raff
Jared Sylvester
Steven Forsyth
Mark McLean
AAML
22
40
0
15 Jun 2018
Adversarial Malware Binaries: Evading Deep Learning for Malware Detection in Executables
Bojan Kolosnjaji
Ambra Demontis
Battista Biggio
Davide Maiorca
Giorgio Giacinto
Claudia Eckert
Fabio Roli
AAML
16
315
0
12 Mar 2018
1