Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.10571
Cited By
Certifying Some Distributional Robustness with Principled Adversarial Training
29 October 2017
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Certifying Some Distributional Robustness with Principled Adversarial Training"
50 / 166 papers shown
Title
Rethinking Non-idealities in Memristive Crossbars for Adversarial Robustness in Neural Networks
Abhiroop Bhattacharjee
Priyadarshini Panda
AAML
20
19
0
25 Aug 2020
Neural Bridge Sampling for Evaluating Safety-Critical Autonomous Systems
Aman Sinha
Matthew O'Kelly
Russ Tedrake
John C. Duchi
39
47
0
24 Aug 2020
Robust Validation: Confident Predictions Even When Distributions Shift
Maxime Cauchois
Suyash Gupta
Alnur Ali
John C. Duchi
OOD
11
89
0
10 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
25
73
0
07 Aug 2020
Distributionally Robust Losses for Latent Covariate Mixtures
John C. Duchi
Tatsunori Hashimoto
Hongseok Namkoong
11
79
0
28 Jul 2020
Measuring Robustness to Natural Distribution Shifts in Image Classification
Rohan Taori
Achal Dave
Vaishaal Shankar
Nicholas Carlini
Benjamin Recht
Ludwig Schmidt
OOD
22
530
0
01 Jul 2020
A Le Cam Type Bound for Adversarial Learning and Applications
Qiuling Xu
Kevin Bello
Jean Honorio
AAML
16
1
0
01 Jul 2020
Counterexample-Guided Learning of Monotonic Neural Networks
Aishwarya Sivaraman
G. Farnadi
T. Millstein
Guy Van den Broeck
16
50
0
16 Jun 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
19
81
0
15 Jun 2020
A Stochastic Subgradient Method for Distributionally Robust Non-Convex Learning
Mert Gurbuzbalaban
A. Ruszczynski
Landi Zhu
13
9
0
08 Jun 2020
Distributionally Robust Weighted
k
k
k
-Nearest Neighbors
Shixiang Zhu
Liyan Xie
Minghe Zhang
Rui Gao
Yao Xie
OOD
21
7
0
07 Jun 2020
Robust Reinforcement Learning with Wasserstein Constraint
Linfang Hou
Liang Pang
Xin Hong
Yanyan Lan
Zhiming Ma
Dawei Yin
14
24
0
01 Jun 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
14
45
0
28 May 2020
Learning to Learn Single Domain Generalization
Fengchun Qiao
Long Zhao
Xi Peng
OOD
29
431
0
30 Mar 2020
Auditing ML Models for Individual Bias and Unfairness
Songkai Xue
Mikhail Yurochkin
Yuekai Sun
MLAU
40
22
0
11 Mar 2020
FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis
Aman Sinha
Matthew O'Kelly
Hongrui Zheng
Rahul Mangharam
John C. Duchi
Russ Tedrake
OffRL
66
26
0
09 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
50
63
0
02 Mar 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
24
785
0
26 Feb 2020
FR-Train: A Mutual Information-Based Approach to Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
6
78
0
24 Feb 2020
Global Convergence and Variance-Reduced Optimization for a Class of Nonconvex-Nonconcave Minimax Problems
Junchi Yang
Negar Kiyavash
Niao He
23
83
0
22 Feb 2020
Adversarial Robustness for Code
Pavol Bielik
Martin Vechev
AAML
9
89
0
11 Feb 2020
Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet
Sizhe Chen
Zhengbao He
Chengjin Sun
Jie-jin Yang
Xiaolin Huang
AAML
29
103
0
16 Jan 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
43
1,158
0
12 Jan 2020
Distributionally Robust Deep Learning using Hardness Weighted Sampling
Lucas Fidon
Michael Aertsen
Thomas Deprest
Doaa Emam
Frédéric Guffens
...
Andrew Melbourne
Sébastien Ourselin
Jan Deprest
Georg Langs
Tom Kamiel Magda Vercauteren
OOD
14
10
0
08 Jan 2020
One Man's Trash is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples
Chang Xiao
Changxi Zheng
AAML
17
19
0
25 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
13
103
0
13 Nov 2019
Enhancing Certifiable Robustness via a Deep Model Ensemble
Huan Zhang
Minhao Cheng
Cho-Jui Hsieh
25
9
0
31 Oct 2019
A First-Order Algorithmic Framework for Wasserstein Distributionally Robust Logistic Regression
Jiajin Li
Sen Huang
Anthony Man-Cho So
OOD
14
12
0
28 Oct 2019
Understanding and Quantifying Adversarial Examples Existence in Linear Classification
Xupeng Shi
A. Ding
AAML
14
3
0
27 Oct 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
21
91
0
29 Sep 2019
On the Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost
Zhuoran Yang
Yongxin Chen
Mingyi Hong
Zhaoran Wang
24
39
0
14 Jul 2019
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
27
2,152
0
05 Jul 2019
Distributionally Robust Counterfactual Risk Minimization
Louis Faury
Ugo Tanielian
Flavian Vasile
E. Smirnova
Elvis Dohmatob
11
45
0
14 Jun 2019
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
B. Li
AAML
25
35
0
09 Jun 2019
Robustness for Non-Parametric Classification: A Generic Attack and Defense
Yao-Yuan Yang
Cyrus Rashtchian
Yizhen Wang
Kamalika Chaudhuri
SILM
AAML
26
42
0
07 Jun 2019
Robustness to Adversarial Perturbations in Learning from Incomplete Data
Amir Najafi
S. Maeda
Masanori Koyama
Takeru Miyato
OOD
8
129
0
24 May 2019
Interpreting Adversarially Trained Convolutional Neural Networks
Tianyuan Zhang
Zhanxing Zhu
AAML
GAN
FAtt
25
157
0
23 May 2019
Tutorial: Safe and Reliable Machine Learning
S. Saria
Adarsh Subbaswamy
FaML
23
82
0
15 Apr 2019
Interpreting Adversarial Examples by Activation Promotion and Suppression
Kaidi Xu
Sijia Liu
Gaoyuan Zhang
Mengshu Sun
Pu Zhao
Quanfu Fan
Chuang Gan
X. Lin
AAML
FAtt
12
43
0
03 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
9
151
0
01 Apr 2019
Variational Inference with Latent Space Quantization for Adversarial Resilience
Vinay Kyatham
P. PrathoshA.
Tarun Kumar Yadav
Deepak Mishra
Dheeraj Mundhra
AAML
16
3
0
24 Mar 2019
Interpreting Neural Networks Using Flip Points
Roozbeh Yousefzadeh
D. O’Leary
AAML
FAtt
19
17
0
21 Mar 2019
Semantics Preserving Adversarial Learning
Ousmane Amadou Dia
Elnaz Barshan
Reza Babanezhad
AAML
GAN
21
2
0
10 Mar 2019
Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search
Abhimanyu Dubey
L. V. D. van der Maaten
Zeki Yalniz
Yixuan Li
D. Mahajan
AAML
22
62
0
05 Mar 2019
A Fundamental Performance Limitation for Adversarial Classification
Abed AlRahman Al Makdah
Vaibhav Katewa
Fabio Pasqualetti
AAML
17
8
0
04 Mar 2019
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
11
68
0
13 Nov 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
M. Guizani
AAML
16
23
0
06 Nov 2018
Weakly-Convex Concave Min-Max Optimization: Provable Algorithms and Applications in Machine Learning
Hassan Rafique
Mingrui Liu
Qihang Lin
Tianbao Yang
15
107
0
04 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
11
15
0
30 Sep 2018
Previous
1
2
3
4
Next