Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.10766
Cited By
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
30 October 2017
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples"
23 / 123 papers shown
Title
Enhancing Gradient-based Attacks with Symbolic Intervals
Shiqi Wang
Yizheng Chen
Ahmed Abdou
Suman Jana
AAML
15
15
0
05 Jun 2019
Enhancing Transformation-based Defenses using a Distribution Classifier
C. Kou
H. Lee
E. Chang
Teck Khim Ng
28
3
0
01 Jun 2019
Enhancing Adversarial Defense by k-Winners-Take-All
Chang Xiao
Peilin Zhong
Changxi Zheng
AAML
11
97
0
25 May 2019
Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
SILM
AAML
19
827
0
05 Apr 2019
Variational Inference with Latent Space Quantization for Adversarial Resilience
Vinay Kyatham
P. PrathoshA.
Tarun Kumar Yadav
Deepak Mishra
Dheeraj Mundhra
AAML
19
3
0
24 Mar 2019
Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search
Abhimanyu Dubey
L. V. D. van der Maaten
Zeki Yalniz
Yixuan Li
D. Mahajan
AAML
22
62
0
05 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
The Odds are Odd: A Statistical Test for Detecting Adversarial Examples
Kevin Roth
Yannic Kilcher
Thomas Hofmann
AAML
27
175
0
13 Feb 2019
AutoGAN: Robust Classifier Against Adversarial Attacks
Blerta Lindqvist
Shridatt Sugrim
R. Izmailov
AAML
13
7
0
08 Dec 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
M. Guizani
AAML
16
23
0
06 Nov 2018
WAIC, but Why? Generative Ensembles for Robust Anomaly Detection
Hyun-Jae Choi
Eric Jang
Alexander A. Alemi
OODD
17
82
0
02 Oct 2018
DeepHunter: Hunting Deep Neural Network Defects via Coverage-Guided Fuzzing
Xiaofei Xie
L. Ma
Felix Juefei Xu
Hongxu Chen
Minhui Xue
Bo-wen Li
Yang Liu
Jianjun Zhao
Jianxiong Yin
Simon See
32
40
0
04 Sep 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
41
226
0
18 Jul 2018
Resisting Adversarial Attacks using Gaussian Mixture Variational Autoencoders
Partha Ghosh
Arpan Losalka
Michael J. Black
AAML
9
77
0
31 May 2018
Defending Against Adversarial Attacks by Leveraging an Entire GAN
G. Santhanam
Paulina Grnarova
AAML
11
40
0
27 May 2018
Towards the first adversarially robust neural network model on MNIST
Lukas Schott
Jonas Rauber
Matthias Bethge
Wieland Brendel
AAML
OOD
14
368
0
23 May 2018
Adversarial Defense based on Structure-to-Signal Autoencoders
Joachim Folz
Sebastián M. Palacio
Jörn Hees
Damian Borth
Andreas Dengel
AAML
23
31
0
21 Mar 2018
Defending against Adversarial Attack towards Deep Neural Networks via Collaborative Multi-task Training
Derui Wang
Chaoran Li
S. Wen
Surya Nepal
Yang Xiang
AAML
33
29
0
14 Mar 2018
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
23
174
0
26 Dec 2017
Generative Adversarial Perturbations
Omid Poursaeed
Isay Katsman
Bicheng Gao
Serge J. Belongie
AAML
GAN
WIGM
22
350
0
06 Dec 2017
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
35
418
0
02 Dec 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
233
2,547
0
25 Jan 2016
Previous
1
2
3