Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.10766
Cited By
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
30 October 2017
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples"
50 / 126 papers shown
Title
Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
Weiran Lin
Keane Lucas
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
AAML
29
5
0
28 Dec 2021
Adv-4-Adv: Thwarting Changing Adversarial Perturbations via Adversarial Domain Adaptation
Tianyue Zheng
Zhe Chen
Shuya Ding
Chao Cai
Jun-Jie Luo
AAML
33
5
0
01 Dec 2021
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
38
56
0
24 Nov 2021
Natural Adversarial Objects
Felix Lau
Nishant Subramani
Sasha Harrison
Aerin Kim
E. Branson
Rosanne Liu
14
7
0
07 Nov 2021
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency
Yonggan Fu
Yang Katie Zhao
Qixuan Yu
Chaojian Li
Yingyan Lin
AAML
44
12
0
11 Sep 2021
Understanding the Logit Distributions of Adversarially-Trained Deep Neural Networks
Landan Seguin
A. Ndirango
Neeli Mishra
SueYeon Chung
Tyler Lee
OOD
22
2
0
26 Aug 2021
AGKD-BML: Defense Against Adversarial Attack by Attention Guided Knowledge Distillation and Bi-directional Metric Learning
Hong Wang
Yuefan Deng
Shinjae Yoo
Haibin Ling
Yuewei Lin
AAML
19
15
0
13 Aug 2021
AID-Purifier: A Light Auxiliary Network for Boosting Adversarial Defense
Duhun Hwang
Eunjung Lee
Wonjong Rhee
AAML
167
14
0
14 Jul 2021
Adversarial Visual Robustness by Causal Intervention
Kaihua Tang
Ming Tao
Hanwang Zhang
CML
AAML
24
21
0
17 Jun 2021
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David A. Wagner
Trevor Darrell
AAML
26
26
0
18 May 2021
Adaptive Clustering of Robust Semantic Representations for Adversarial Image Purification
S. Silva
Arun Das
I. Scarff
Peyman Najafirad
AAML
20
1
0
05 Apr 2021
Improving Global Adversarial Robustness Generalization With Adversarially Trained GAN
Desheng Wang
Wei-dong Jin
Yunpu Wu
Aamir Khan
GAN
25
8
0
08 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
CAP-GAN: Towards Adversarial Robustness with Cycle-consistent Attentional Purification
Mingu Kang
T. Tran
Seungju Cho
Daeyoung Kim
AAML
27
3
0
15 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
64
623
0
22 Jan 2021
Local Competition and Stochasticity for Adversarial Robustness in Deep Learning
Konstantinos P. Panousis
S. Chatzis
Antonios Alexos
Sergios Theodoridis
BDL
AAML
OOD
56
19
0
04 Jan 2021
Generating Out of Distribution Adversarial Attack using Latent Space Poisoning
Ujjwal Upadhyay
Prerana Mukherjee
36
6
0
09 Dec 2020
The Vulnerability of the Neural Networks Against Adversarial Examples in Deep Learning Algorithms
Rui Zhao
AAML
21
1
0
02 Nov 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
16
22
0
15 Oct 2020
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated Gradients
Yifei Huang
Yaodong Yu
Hongyang R. Zhang
Yi-An Ma
Yuan Yao
AAML
29
26
0
28 Sep 2020
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
19
11
0
21 Sep 2020
Adversarially Robust Neural Architectures
Minjing Dong
Yanxi Li
Yunhe Wang
Chang Xu
AAML
OOD
34
48
0
02 Sep 2020
Defending Adversarial Examples via DNN Bottleneck Reinforcement
Wenqing Liu
Miaojing Shi
Teddy Furon
Li Li
AAML
15
8
0
12 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
25
73
0
07 Aug 2020
AdvFoolGen: Creating Persistent Troubles for Deep Classifiers
Yuzhen Ding
Nupur Thakur
Baoxin Li
AAML
18
3
0
20 Jul 2020
Adversarial Example Games
A. Bose
Gauthier Gidel
Hugo Berrard
Andre Cianflone
Pascal Vincent
Simon Lacoste-Julien
William L. Hamilton
AAML
GAN
33
51
0
01 Jul 2020
Improving Calibration through the Relationship with Adversarial Robustness
Yao Qin
Xuezhi Wang
Alex Beutel
Ed H. Chi
AAML
27
25
0
29 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
Encryption Inspired Adversarial Defense for Visual Classification
Maungmaung Aprilpyone
Hitoshi Kiya
16
32
0
16 May 2020
Enhancing Intrinsic Adversarial Robustness via Feature Pyramid Decoder
Guanlin Li
Shuya Ding
Jun-Jie Luo
Chang-rui Liu
AAML
42
19
0
06 May 2020
Single-step Adversarial training with Dropout Scheduling
S. VivekB.
R. Venkatesh Babu
OOD
AAML
16
71
0
18 Apr 2020
When the Guard failed the Droid: A case study of Android malware
Harel Berger
Chen Hajaj
A. Dvir
AAML
15
7
0
31 Mar 2020
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Bo-wen Li
P. Varshney
D. Song
AAML
28
47
0
16 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
58
63
0
02 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
30
785
0
26 Feb 2020
Deflecting Adversarial Attacks
Yao Qin
Nicholas Frosst
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
AAML
27
15
0
18 Feb 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
18
482
0
12 Feb 2020
Minimax Defense against Gradient-based Adversarial Attacks
Blerta Lindqvist
R. Izmailov
AAML
14
0
0
04 Feb 2020
Towards Sharper First-Order Adversary with Quantized Gradients
Zhuanghua Liu
Ivor W. Tsang
AAML
8
0
0
01 Feb 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
49
1,158
0
12 Jan 2020
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Jackson Wang
J. Jacobsen
D. Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
22
527
0
06 Dec 2019
One Man's Trash is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples
Chang Xiao
Changxi Zheng
AAML
22
19
0
25 Nov 2019
Invert and Defend: Model-based Approximate Inversion of Generative Adversarial Networks for Secure Inference
Wei-An Lin
Yogesh Balaji
Pouya Samangouei
Rama Chellappa
30
6
0
23 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
13
103
0
13 Nov 2019
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
26
68
0
06 Nov 2019
Adversarial Example Detection by Classification for Deep Speech Recognition
Saeid Samizade
Z. Tan
Chao Shen
X. Guan
AAML
16
35
0
22 Oct 2019
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
27
91
0
29 Sep 2019
Defending Against Adversarial Iris Examples Using Wavelet Decomposition
Sobhan Soleymani
Ali Dabouei
J. Dawson
Nasser M. Nasrabadi
AAML
24
9
0
08 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
21
230
0
24 Jul 2019
Towards Adversarially Robust Object Detection
Haichao Zhang
Jianyu Wang
AAML
ObjD
23
130
0
24 Jul 2019
Previous
1
2
3
Next