ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10766
  4. Cited By
PixelDefend: Leveraging Generative Models to Understand and Defend
  against Adversarial Examples

PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples

30 October 2017
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
    AAML
ArXivPDFHTML

Papers citing "PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples"

50 / 126 papers shown
Title
Constrained Gradient Descent: A Powerful and Principled Evasion Attack
  Against Neural Networks
Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
Weiran Lin
Keane Lucas
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
AAML
29
5
0
28 Dec 2021
Adv-4-Adv: Thwarting Changing Adversarial Perturbations via Adversarial
  Domain Adaptation
Adv-4-Adv: Thwarting Changing Adversarial Perturbations via Adversarial Domain Adaptation
Tianyue Zheng
Zhe Chen
Shuya Ding
Chao Cai
Jun-Jie Luo
AAML
33
5
0
01 Dec 2021
Subspace Adversarial Training
Subspace Adversarial Training
Tao Li
Yingwen Wu
Sizhe Chen
Kun Fang
Xiaolin Huang
AAML
OOD
38
56
0
24 Nov 2021
Natural Adversarial Objects
Natural Adversarial Objects
Felix Lau
Nishant Subramani
Sasha Harrison
Aerin Kim
E. Branson
Rosanne Liu
14
7
0
07 Nov 2021
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency
Yonggan Fu
Yang Katie Zhao
Qixuan Yu
Chaojian Li
Yingyan Lin
AAML
44
12
0
11 Sep 2021
Understanding the Logit Distributions of Adversarially-Trained Deep
  Neural Networks
Understanding the Logit Distributions of Adversarially-Trained Deep Neural Networks
Landan Seguin
A. Ndirango
Neeli Mishra
SueYeon Chung
Tyler Lee
OOD
22
2
0
26 Aug 2021
AGKD-BML: Defense Against Adversarial Attack by Attention Guided
  Knowledge Distillation and Bi-directional Metric Learning
AGKD-BML: Defense Against Adversarial Attack by Attention Guided Knowledge Distillation and Bi-directional Metric Learning
Hong Wang
Yuefan Deng
Shinjae Yoo
Haibin Ling
Yuewei Lin
AAML
19
15
0
13 Aug 2021
AID-Purifier: A Light Auxiliary Network for Boosting Adversarial Defense
AID-Purifier: A Light Auxiliary Network for Boosting Adversarial Defense
Duhun Hwang
Eunjung Lee
Wonjong Rhee
AAML
167
14
0
14 Jul 2021
Adversarial Visual Robustness by Causal Intervention
Adversarial Visual Robustness by Causal Intervention
Kaihua Tang
Ming Tao
Hanwang Zhang
CML
AAML
24
21
0
17 Jun 2021
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial
  Attacks
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David A. Wagner
Trevor Darrell
AAML
26
26
0
18 May 2021
Adaptive Clustering of Robust Semantic Representations for Adversarial
  Image Purification
Adaptive Clustering of Robust Semantic Representations for Adversarial Image Purification
S. Silva
Arun Das
I. Scarff
Peyman Najafirad
AAML
20
1
0
05 Apr 2021
Improving Global Adversarial Robustness Generalization With
  Adversarially Trained GAN
Improving Global Adversarial Robustness Generalization With Adversarially Trained GAN
Desheng Wang
Wei-dong Jin
Yunpu Wu
Aamir Khan
GAN
25
8
0
08 Mar 2021
Low Curvature Activations Reduce Overfitting in Adversarial Training
Low Curvature Activations Reduce Overfitting in Adversarial Training
Vasu Singla
Sahil Singla
David Jacobs
S. Feizi
AAML
32
45
0
15 Feb 2021
CAP-GAN: Towards Adversarial Robustness with Cycle-consistent
  Attentional Purification
CAP-GAN: Towards Adversarial Robustness with Cycle-consistent Attentional Purification
Mingu Kang
T. Tran
Seungju Cho
Daeyoung Kim
AAML
27
3
0
15 Feb 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
64
623
0
22 Jan 2021
Local Competition and Stochasticity for Adversarial Robustness in Deep
  Learning
Local Competition and Stochasticity for Adversarial Robustness in Deep Learning
Konstantinos P. Panousis
S. Chatzis
Antonios Alexos
Sergios Theodoridis
BDL
AAML
OOD
56
19
0
04 Jan 2021
Generating Out of Distribution Adversarial Attack using Latent Space
  Poisoning
Generating Out of Distribution Adversarial Attack using Latent Space Poisoning
Ujjwal Upadhyay
Prerana Mukherjee
36
6
0
09 Dec 2020
The Vulnerability of the Neural Networks Against Adversarial Examples in
  Deep Learning Algorithms
The Vulnerability of the Neural Networks Against Adversarial Examples in Deep Learning Algorithms
Rui Zhao
AAML
21
1
0
02 Nov 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
  and Learning
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
16
22
0
15 Oct 2020
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated
  Gradients
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated Gradients
Yifei Huang
Yaodong Yu
Hongyang R. Zhang
Yi-An Ma
Yuan Yao
AAML
29
26
0
28 Sep 2020
Adversarial Training with Stochastic Weight Average
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
19
11
0
21 Sep 2020
Adversarially Robust Neural Architectures
Adversarially Robust Neural Architectures
Minjing Dong
Yanxi Li
Yunhe Wang
Chang Xu
AAML
OOD
34
48
0
02 Sep 2020
Defending Adversarial Examples via DNN Bottleneck Reinforcement
Defending Adversarial Examples via DNN Bottleneck Reinforcement
Wenqing Liu
Miaojing Shi
Teddy Furon
Li Li
AAML
15
8
0
12 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
25
73
0
07 Aug 2020
AdvFoolGen: Creating Persistent Troubles for Deep Classifiers
AdvFoolGen: Creating Persistent Troubles for Deep Classifiers
Yuzhen Ding
Nupur Thakur
Baoxin Li
AAML
18
3
0
20 Jul 2020
Adversarial Example Games
Adversarial Example Games
A. Bose
Gauthier Gidel
Hugo Berrard
Andre Cianflone
Pascal Vincent
Simon Lacoste-Julien
William L. Hamilton
AAML
GAN
33
51
0
01 Jul 2020
Improving Calibration through the Relationship with Adversarial
  Robustness
Improving Calibration through the Relationship with Adversarial Robustness
Yao Qin
Xuezhi Wang
Alex Beutel
Ed H. Chi
AAML
27
25
0
29 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep
  Learning
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
27
146
0
20 May 2020
Encryption Inspired Adversarial Defense for Visual Classification
Encryption Inspired Adversarial Defense for Visual Classification
Maungmaung Aprilpyone
Hitoshi Kiya
16
32
0
16 May 2020
Enhancing Intrinsic Adversarial Robustness via Feature Pyramid Decoder
Enhancing Intrinsic Adversarial Robustness via Feature Pyramid Decoder
Guanlin Li
Shuya Ding
Jun-Jie Luo
Chang-rui Liu
AAML
42
19
0
06 May 2020
Single-step Adversarial training with Dropout Scheduling
Single-step Adversarial training with Dropout Scheduling
S. VivekB.
R. Venkatesh Babu
OOD
AAML
16
71
0
18 Apr 2020
When the Guard failed the Droid: A case study of Android malware
When the Guard failed the Droid: A case study of Android malware
Harel Berger
Chen Hajaj
A. Dvir
AAML
15
7
0
31 Mar 2020
Anomalous Example Detection in Deep Learning: A Survey
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Bo-wen Li
P. Varshney
D. Song
AAML
28
47
0
16 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
  Adversarial Robustness
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
58
63
0
02 Mar 2020
Overfitting in adversarially robust deep learning
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
30
785
0
26 Feb 2020
Deflecting Adversarial Attacks
Deflecting Adversarial Attacks
Yao Qin
Nicholas Frosst
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
AAML
27
15
0
18 Feb 2020
Machine Learning in Python: Main developments and technology trends in
  data science, machine learning, and artificial intelligence
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
18
482
0
12 Feb 2020
Minimax Defense against Gradient-based Adversarial Attacks
Minimax Defense against Gradient-based Adversarial Attacks
Blerta Lindqvist
R. Izmailov
AAML
14
0
0
04 Feb 2020
Towards Sharper First-Order Adversary with Quantized Gradients
Towards Sharper First-Order Adversary with Quantized Gradients
Zhuanghua Liu
Ivor W. Tsang
AAML
8
0
0
01 Feb 2020
Fast is better than free: Revisiting adversarial training
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
49
1,158
0
12 Jan 2020
Your Classifier is Secretly an Energy Based Model and You Should Treat
  it Like One
Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One
Will Grathwohl
Kuan-Chieh Jackson Wang
J. Jacobsen
D. Duvenaud
Mohammad Norouzi
Kevin Swersky
VLM
22
527
0
06 Dec 2019
One Man's Trash is Another Man's Treasure: Resisting Adversarial
  Examples by Adversarial Examples
One Man's Trash is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples
Chang Xiao
Changxi Zheng
AAML
22
19
0
25 Nov 2019
Invert and Defend: Model-based Approximate Inversion of Generative
  Adversarial Networks for Secure Inference
Invert and Defend: Model-based Approximate Inversion of Generative Adversarial Networks for Secure Inference
Wei-An Lin
Yogesh Balaji
Pouya Samangouei
Rama Chellappa
30
6
0
23 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
13
103
0
13 Nov 2019
The Threat of Adversarial Attacks on Machine Learning in Network
  Security -- A Survey
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
26
68
0
06 Nov 2019
Adversarial Example Detection by Classification for Deep Speech
  Recognition
Adversarial Example Detection by Classification for Deep Speech Recognition
Saeid Samizade
Z. Tan
Chao Shen
X. Guan
AAML
16
35
0
22 Oct 2019
Test-Time Training with Self-Supervision for Generalization under
  Distribution Shifts
Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
Yu Sun
Xiaolong Wang
Zhuang Liu
John Miller
Alexei A. Efros
Moritz Hardt
TTA
OOD
27
91
0
29 Sep 2019
Defending Against Adversarial Iris Examples Using Wavelet Decomposition
Defending Against Adversarial Iris Examples Using Wavelet Decomposition
Sobhan Soleymani
Ali Dabouei
J. Dawson
Nasser M. Nasrabadi
AAML
24
9
0
08 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based
  Adversarial Training
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training
Haichao Zhang
Jianyu Wang
AAML
21
230
0
24 Jul 2019
Towards Adversarially Robust Object Detection
Towards Adversarially Robust Object Detection
Haichao Zhang
Jianyu Wang
AAML
ObjD
23
130
0
24 Jul 2019
Previous
123
Next