ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.00636
  4. Cited By
Bayesian Recurrent Neural Network Models for Forecasting and Quantifying
  Uncertainty in Spatial-Temporal Data

Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data

2 November 2017
Patrick L. McDermott
C. Wikle
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data"

5 / 5 papers shown
Title
Spatial Bayesian Neural Networks
Spatial Bayesian Neural Networks
A. Zammit‐Mangion
Michael D. Kaminski
Ba-Hien Tran
Maurizio Filippone
Noel Cressie
BDL
10
7
0
16 Nov 2023
Convergence Analysis for Training Stochastic Neural Networks via
  Stochastic Gradient Descent
Convergence Analysis for Training Stochastic Neural Networks via Stochastic Gradient Descent
Richard Archibald
F. Bao
Yanzhao Cao
Hui‐Jie Sun
36
2
0
17 Dec 2022
Posterior Regularized Bayesian Neural Network Incorporating Soft and
  Hard Knowledge Constraints
Posterior Regularized Bayesian Neural Network Incorporating Soft and Hard Knowledge Constraints
Jiayu Huang
Yutian Pang
Yongming Liu
Hao Yan
BDL
UQCV
17
15
0
16 Oct 2022
Predicting Hurricane Trajectories using a Recurrent Neural Network
Predicting Hurricane Trajectories using a Recurrent Neural Network
Sheila Alemany
J. Beltran
Adrián Pérez
Sam Ganzfried
9
133
0
01 Feb 2018
Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic Flows and
  High Frequency Trading
Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic Flows and High Frequency Trading
M. Dixon
Nicholas G. Polson
Vadim O. Sokolov
AI4TS
23
67
0
27 May 2017
1