ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.01204
  4. Cited By
Metrics for Deep Generative Models

Metrics for Deep Generative Models

3 November 2017
Nutan Chen
Alexej Klushyn
Richard Kurle
Xueyan Jiang
Justin Bayer
Patrick van der Smagt
    SyDa
    DRL
ArXivPDFHTML

Papers citing "Metrics for Deep Generative Models"

24 / 24 papers shown
Title
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Shinnosuke Saito
Takashi Matsubara
DiffM
82
1
0
28 Apr 2025
SRIF: Semantic Shape Registration Empowered by Diffusion-based Image
  Morphing and Flow Estimation
SRIF: Semantic Shape Registration Empowered by Diffusion-based Image Morphing and Flow Estimation
Mingze Sun
Chen Guo
Puhua Jiang
Shiwei Mao
Yurun Chen
Ruqi Huang
69
4
0
18 Sep 2024
Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
Melanie F. Pradier
Javier González
CML
50
0
0
09 Sep 2024
Varying Manifolds in Diffusion: From Time-varying Geometries to Visual
  Saliency
Varying Manifolds in Diffusion: From Time-varying Geometries to Visual Saliency
Junhao Chen
Manyi Li
Zherong Pan
Xifeng Gao
Changhe Tu
DiffM
43
2
0
07 Jun 2024
Pulling back symmetric Riemannian geometry for data analysis
Pulling back symmetric Riemannian geometry for data analysis
W. Diepeveen
32
2
0
11 Mar 2024
Understanding the Latent Space of Diffusion Models through the Lens of
  Riemannian Geometry
Understanding the Latent Space of Diffusion Models through the Lens of Riemannian Geometry
Yong-Hyun Park
Mingi Kwon
J. Choi
Junghyo Jo
Youngjung Uh
DiffM
40
60
0
24 Jul 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
26
1
0
24 Mar 2023
Unsupervised Discovery of Semantic Latent Directions in Diffusion Models
Unsupervised Discovery of Semantic Latent Directions in Diffusion Models
Yong-Hyun Park
Mingi Kwon
Junghyo Jo
Youngjung Uh
DiffM
41
22
0
24 Feb 2023
Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation
  for Pretrained Deep Generative Model
Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation for Pretrained Deep Generative Model
Takehiro Aoshima
Takashi Matsubara
47
4
0
26 Nov 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
37
21
0
15 Sep 2022
Rayleigh EigenDirections (REDs): GAN latent space traversals for
  multidimensional features
Rayleigh EigenDirections (REDs): GAN latent space traversals for multidimensional features
Guha Balakrishnan
Raghudeep Gadde
Aleix M. Martinez
Pietro Perona
44
3
0
25 Jan 2022
Exploring the Latent Space of Autoencoders with Interventional Assays
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
49
17
0
30 Jun 2021
Pulling back information geometry
Pulling back information geometry
Georgios Arvanitidis
Miguel González Duque
Alison Pouplin
Dimitris Kalatzis
Søren Hauberg
DRL
30
14
0
09 Jun 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
45
62
0
30 Apr 2021
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
24
15
0
22 Oct 2020
Geometrically Enriched Latent Spaces
Geometrically Enriched Latent Spaces
Georgios Arvanitidis
Søren Hauberg
Bernhard Schölkopf
DRL
19
51
0
02 Aug 2020
Variational Autoencoder with Learned Latent Structure
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CML
DRL
29
42
0
18 Jun 2020
Learning Flat Latent Manifolds with VAEs
Learning Flat Latent Manifolds with VAEs
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
DRL
35
39
0
12 Feb 2020
Data Interpolations in Deep Generative Models under Non-Simply-Connected
  Manifold Topology
Data Interpolations in Deep Generative Models under Non-Simply-Connected Manifold Topology
Jiseob Kim
Byoung-Tak Zhang
6
2
0
20 Jan 2019
Fast Approximate Geodesics for Deep Generative Models
Fast Approximate Geodesics for Deep Generative Models
Nutan Chen
Francesco Ferroni
Alexej Klushyn
A. Paraschos
Justin Bayer
Patrick van der Smagt
DRL
19
30
0
19 Dec 2018
Active Learning based on Data Uncertainty and Model Sensitivity
Active Learning based on Data Uncertainty and Model Sensitivity
Nutan Chen
Alexej Klushyn
A. Paraschos
Djalel Benbouzid
Patrick van der Smagt
13
17
0
06 Aug 2018
Only Bayes should learn a manifold (on the estimation of differential
  geometric structure from data)
Only Bayes should learn a manifold (on the estimation of differential geometric structure from data)
Søren Hauberg
19
31
0
13 Jun 2018
Change Detection in Graph Streams by Learning Graph Embeddings on
  Constant-Curvature Manifolds
Change Detection in Graph Streams by Learning Graph Embeddings on Constant-Curvature Manifolds
Daniele Grattarola
Daniele Zambon
Cesare Alippi
L. Livi
GNN
35
40
0
16 May 2018
Is Generator Conditioning Causally Related to GAN Performance?
Is Generator Conditioning Causally Related to GAN Performance?
Augustus Odena
Jacob Buckman
Catherine Olsson
Tom B. Brown
C. Olah
Colin Raffel
Ian Goodfellow
AI4CE
35
112
0
23 Feb 2018
1