ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.01297
  4. Cited By
Implicit Weight Uncertainty in Neural Networks

Implicit Weight Uncertainty in Neural Networks

3 November 2017
Nick Pawlowski
Andrew Brock
Matthew C. H. Lee
Martin Rajchl
Ben Glocker
    BDL
    UQCV
ArXivPDFHTML

Papers citing "Implicit Weight Uncertainty in Neural Networks"

15 / 15 papers shown
Title
Principled Weight Initialization for Hypernetworks
Principled Weight Initialization for Hypernetworks
Oscar Chang
Lampros Flokas
Hod Lipson
22
73
0
13 Dec 2023
Digital Twin Framework for Optimal and Autonomous Decision-Making in
  Cyber-Physical Systems: Enhancing Reliability and Adaptability in the Oil and
  Gas Industry
Digital Twin Framework for Optimal and Autonomous Decision-Making in Cyber-Physical Systems: Enhancing Reliability and Adaptability in the Oil and Gas Industry
C. Rebello
Johannes Jäschkea
Idelfonso B. R. Nogueira
AI4CE
17
0
0
21 Nov 2023
Implicit Variational Inference for High-Dimensional Posteriors
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
Kristoffer Stensbo-Smidt
Wouter Boomsma
J. Frellsen
BDL
18
1
0
10 Oct 2023
Block-local learning with probabilistic latent representations
Block-local learning with probabilistic latent representations
David Kappel
Khaleelulla Khan Nazeer
Cabrel Teguemne Fokam
Christian Mayr
Anand Subramoney
24
4
0
24 May 2023
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
21
0
0
27 Jun 2022
Adversarial Attack for Uncertainty Estimation: Identifying Critical
  Regions in Neural Networks
Adversarial Attack for Uncertainty Estimation: Identifying Critical Regions in Neural Networks
Ismail Alarab
S. Prakoonwit
AAML
19
14
0
15 Jul 2021
Graceful Degradation and Related Fields
Graceful Degradation and Related Fields
J. Dymond
31
4
0
21 Jun 2021
Safety Enhancement for Deep Reinforcement Learning in Autonomous
  Separation Assurance
Safety Enhancement for Deep Reinforcement Learning in Autonomous Separation Assurance
Wei Guo
Marc Brittain
Peng Wei
16
18
0
05 May 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLL
BDL
51
54
0
01 Mar 2021
Multidimensional Uncertainty-Aware Evidential Neural Networks
Multidimensional Uncertainty-Aware Evidential Neural Networks
Yibo Hu
Yuzhe Ou
Xujiang Zhao
Jin-Hee Cho
Feng Chen
EDL
UQCV
AAML
25
23
0
26 Dec 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
15
60
0
17 May 2020
Deep learning with noisy labels: exploring techniques and remedies in
  medical image analysis
Deep learning with noisy labels: exploring techniques and remedies in medical image analysis
Davood Karimi
Haoran Dou
Simon K. Warfield
Ali Gholipour
NoLa
11
534
0
05 Dec 2019
Stochastic Neural Network with Kronecker Flow
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
24
8
0
10 Jun 2019
Bayesian Learning of Neural Network Architectures
Bayesian Learning of Neural Network Architectures
G. Dikov
Patrick van der Smagt
Justin Bayer
BDL
15
30
0
14 Jan 2019
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCV
BDL
197
745
0
06 Jun 2015
1