Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.03908
Cited By
Finite Sample Differentially Private Confidence Intervals
10 November 2017
Vishesh Karwa
Salil P. Vadhan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Finite Sample Differentially Private Confidence Intervals"
50 / 56 papers shown
Title
Learning with Differentially Private (Sliced) Wasserstein Gradients
David Rodríguez-Vítores
Clément Lalanne
Jean-Michel Loubes
FedML
46
0
0
03 Feb 2025
Private Means and the Curious Incident of the Free Lunch
Jack Fitzsimons
James Honaker
Michael Shoemate
Vikrant Singhal
49
2
0
19 Aug 2024
On Differentially Private U Statistics
Kamalika Chaudhuri
Po-Ling Loh
Shourya Pandey
Purnamrita Sarkar
FedML
64
0
0
06 Jul 2024
Sample-Optimal Locally Private Hypothesis Selection and the Provable Benefits of Interactivity
A. F. Pour
Hassan Ashtiani
S. Asoodeh
46
0
0
09 Dec 2023
Instance-Specific Asymmetric Sensitivity in Differential Privacy
David Durfee
32
1
0
02 Nov 2023
DPpack: An R Package for Differentially Private Statistical Analysis and Machine Learning
S. Giddens
F. Liu
38
1
0
19 Sep 2023
On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence
Achraf Azize
Marc Jourdan
Aymen Al Marjani
D. Basu
42
3
0
05 Sep 2023
Concentrated Differential Privacy for Bandits
Achraf Azize
D. Basu
28
4
0
01 Sep 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
46
11
0
11 Aug 2023
Training Private Models That Know What They Don't Know
Stephan Rabanser
Anvith Thudi
Abhradeep Thakurta
Krishnamurthy Dvijotham
Nicolas Papernot
26
7
0
28 May 2023
Score Attack: A Lower Bound Technique for Optimal Differentially Private Learning
T. Tony Cai
Yichen Wang
Linjun Zhang
46
16
0
13 Mar 2023
Simulation-based, Finite-sample Inference for Privatized Data
Jordan Awan
Zhanyu Wang
35
7
0
09 Mar 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
Jamil Arbas
H. Ashtiani
Christopher Liaw
40
23
0
07 Mar 2023
On Private and Robust Bandits
Yulian Wu
Xingyu Zhou
Youming Tao
Di Wang
24
5
0
06 Feb 2023
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
Differentially Private Confidence Intervals for Proportions under Stratified Random Sampling
Shurong Lin
Mark Bun
Marco Gaboardi
E. D. Kolaczyk
Adam D. Smith
24
5
0
19 Jan 2023
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
43
20
0
11 Jan 2023
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
18
50
0
09 Dec 2022
Anonymized Histograms in Intermediate Privacy Models
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
PICV
115
1
0
27 Oct 2022
Differentially Private Bootstrap: New Privacy Analysis and Inference Strategies
Zhanyu Wang
Guang Cheng
Jordan Awan
34
9
0
12 Oct 2022
On the Statistical Complexity of Estimation and Testing under Privacy Constraints
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
27
7
0
05 Oct 2022
Algorithms with More Granular Differential Privacy Guarantees
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Thomas Steinke
67
6
0
08 Sep 2022
Privacy Aware Experimentation over Sensitive Groups: A General Chi Square Approach
R. Friedberg
Ryan M. Rogers
29
3
0
17 Aug 2022
Private Estimation with Public Data
Alex Bie
Gautam Kamath
Vikrant Singhal
36
28
0
16 Aug 2022
Analyzing the Differentially Private Theil-Sen Estimator for Simple Linear Regression
Jayshree Sarathy
Salil P. Vadhan
31
7
0
27 Jul 2022
"You Can't Fix What You Can't Measure": Privately Measuring Demographic Performance Disparities in Federated Learning
Marc Juárez
Aleksandra Korolova
FedML
32
9
0
24 Jun 2022
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma
Gautam Kamath
Argyris Mouzakis
Vikrant Singhal
FedML
42
26
0
17 May 2022
Statistical Data Privacy: A Song of Privacy and Utility
Aleksandra B. Slavkovic
Jeremy Seeman
23
26
0
06 May 2022
Private High-Dimensional Hypothesis Testing
Shyam Narayanan
FedML
40
11
0
03 Mar 2022
Differentially Private Regression with Unbounded Covariates
Jason Milionis
Alkis Kalavasis
Dimitris Fotakis
Stratis Ioannidis
23
10
0
19 Feb 2022
Optimal and Differentially Private Data Acquisition: Central and Local Mechanisms
Alireza Fallah
A. Makhdoumi
Azarakhsh Malekian
Asuman Ozdaglar
FedML
30
29
0
10 Jan 2022
Differentially-Private Clustering of Easy Instances
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
Eliad Tsfadia
12
22
0
29 Dec 2021
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
35
46
0
07 Dec 2021
Unbiased Statistical Estimation and Valid Confidence Intervals Under Differential Privacy
Christian Covington
Xi He
James Honaker
Gautam Kamath
33
26
0
27 Oct 2021
FriendlyCore: Practical Differentially Private Aggregation
Eliad Tsfadia
E. Cohen
Haim Kaplan
Yishay Mansour
Uri Stemmer
20
33
0
19 Oct 2021
Covariance-Aware Private Mean Estimation Without Private Covariance Estimation
Gavin Brown
Marco Gaboardi
Adam D. Smith
Jonathan R. Ullman
Lydia Zakynthinou
FedML
28
48
0
24 Jun 2021
Differentially private inference via noisy optimization
Marco Avella-Medina
Casey Bradshaw
Po-Ling Loh
FedML
40
29
0
19 Mar 2021
Private Prediction Sets
Anastasios Nikolas Angelopoulos
Stephen Bates
Tijana Zrnic
Michael I. Jordan
16
12
0
11 Feb 2021
On Avoiding the Union Bound When Answering Multiple Differentially Private Queries
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
FedML
28
10
0
16 Dec 2020
Optimal Private Median Estimation under Minimal Distributional Assumptions
Christos Tzamos
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Ilias Zadik
27
21
0
12 Nov 2020
On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data
Di Wang
Hanshen Xiao
S. Devadas
Jinhui Xu
29
55
0
21 Oct 2020
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
Ishaq Aden-Ali
H. Ashtiani
Gautam Kamath
42
42
0
19 Oct 2020
Private Reinforcement Learning with PAC and Regret Guarantees
G. Vietri
Borja Balle
A. Krishnamurthy
Zhiwei Steven Wu
21
59
0
18 Sep 2020
CoinPress: Practical Private Mean and Covariance Estimation
Sourav Biswas
Yihe Dong
Gautam Kamath
Jonathan R. Ullman
39
115
0
11 Jun 2020
A Primer on Private Statistics
Gautam Kamath
Jonathan R. Ullman
38
48
0
30 Apr 2020
Differentially Private Assouad, Fano, and Le Cam
Jayadev Acharya
Ziteng Sun
Huanyu Zhang
FedML
23
58
0
14 Apr 2020
Differentially Private Confidence Intervals
Wenxin Du
C. Foot
Monica Moniot
Andrew Bray
Adam Groce
23
45
0
07 Jan 2020
Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation
Mark Bun
Thomas Steinke
47
74
0
06 Jun 2019
Private Identity Testing for High-Dimensional Distributions
C. Canonne
Gautam Kamath
Audra McMillan
Jonathan R. Ullman
Lydia Zakynthinou
37
36
0
28 May 2019
KNG: The K-Norm Gradient Mechanism
M. Reimherr
Jordan Awan
29
23
0
23 May 2019
1
2
Next