Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.05174
Cited By
Near-Optimal Discrete Optimization for Experimental Design: A Regret Minimization Approach
14 November 2017
Zeyuan Allen-Zhu
Yuanzhi Li
Aarti Singh
Yining Wang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Near-Optimal Discrete Optimization for Experimental Design: A Regret Minimization Approach"
25 / 25 papers shown
Title
Breaking the
log
(
1
/
Δ
2
)
\log(1/\Delta_2)
lo
g
(
1/
Δ
2
)
Barrier: Better Batched Best Arm Identification with Adaptive Grids
Tianyuan Jin
Qin Zhang
Dongruo Zhou
120
0
0
29 Jan 2025
Experimental Design Using Interlacing Polynomials
L. Lau
Robert Wang
Hong Zhou
22
0
0
15 Oct 2024
Robust Offline Active Learning on Graphs
Yuanchen Wu
Yubai Yuan
OffRL
48
0
0
15 Aug 2024
Sketchy Moment Matching: Toward Fast and Provable Data Selection for Finetuning
Yijun Dong
Hoang Phan
Xiang Pan
Qi Lei
148
6
0
08 Jul 2024
Experimental Designs for Heteroskedastic Variance
Justin Weltz
Tanner Fiez
Alex Volfovsky
Eric B. Laber
Blake Mason
Houssam Nassif
Lalit P. Jain
76
5
0
06 Oct 2023
Additive Causal Bandits with Unknown Graph
Alan Malek
Virginia Aglietti
Silvia Chiappa
CML
59
9
0
13 Jun 2023
Experimental Design for Any
p
p
p
-Norm
L. Lau
Robert Wang
Hong Zhou
12
1
0
03 May 2023
Composable Coresets for Constrained Determinant Maximization and Beyond
S. Mahabadi
T. Vuong
51
1
0
01 Nov 2022
Partition-Based Active Learning for Graph Neural Networks
Jiaqi Ma
Ziqiao Ma
Joyce Chai
Qiaozhu Mei
62
18
0
23 Jan 2022
Collaborative Pure Exploration in Kernel Bandit
Yihan Du
Wei Chen
Yuko Kuroki
Longbo Huang
104
12
0
29 Oct 2021
Near Instance Optimal Model Selection for Pure Exploration Linear Bandits
Yinglun Zhu
Julian Katz-Samuels
Robert D. Nowak
55
7
0
10 Sep 2021
Pure Exploration in Kernel and Neural Bandits
Yinglun Zhu
Dongruo Zhou
Ruoxi Jiang
Quanquan Gu
Rebecca Willett
Robert D. Nowak
57
16
0
22 Jun 2021
Experimental Design for Regret Minimization in Linear Bandits
Andrew Wagenmaker
Julian Katz-Samuels
Kevin Jamieson
114
16
0
01 Nov 2020
A Local Search Framework for Experimental Design
L. Lau
Hong Zhou
27
9
0
29 Oct 2020
Linear Bandits with Limited Adaptivity and Learning Distributional Optimal Design
Yufei Ruan
Jiaqi Yang
Yuanshuo Zhou
OffRL
168
52
0
04 Jul 2020
An Empirical Process Approach to the Union Bound: Practical Algorithms for Combinatorial and Linear Bandits
Julian Katz-Samuels
Lalit P. Jain
Zohar Karnin
Kevin Jamieson
176
68
0
21 Jun 2020
λ
λ
λ
-Regularized A-Optimal Design and its Approximation by
λ
λ
λ
-Regularized Proportional Volume Sampling
U. Tantipongpipat
18
0
0
19 Jun 2020
Maximizing Determinants under Matroid Constraints
V. Madan
Aleksandar Nikolov
Mohit Singh
U. Tantipongpipat
49
8
0
16 Apr 2020
Active Learning for Graph Neural Networks via Node Feature Propagation
Yuexin Wu
Yichong Xu
Aarti Singh
Yiming Yang
A. Dubrawski
GNN
AI4CE
101
65
0
16 Oct 2019
Sequential Experimental Design for Transductive Linear Bandits
Tanner Fiez
Lalit P. Jain
Kevin Jamieson
Lillian J. Ratliff
77
109
0
20 Jun 2019
Bandit Principal Component Analysis
W. Kotłowski
Gergely Neu
48
17
0
08 Feb 2019
Composable Core-sets for Determinant Maximization Problems via Spectral Spanners
Piotr Indyk
S. Mahabadi
S. Gharan
A. Rezaei
50
20
0
31 Jul 2018
Proportional Volume Sampling and Approximation Algorithms for A-Optimal Design
Aleksandar Nikolov
Mohit Singh
U. Tantipongpipat
96
48
0
22 Feb 2018
Gaussian Process Landmarking on Manifolds
Tingran Gao
S. Kovalsky
Ingrid Daubechies
124
39
0
09 Feb 2018
Active Regression via Linear-Sample Sparsification
Xue Chen
Eric Price
127
62
0
27 Nov 2017
1