ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.05603
  4. Cited By
Words are Malleable: Computing Semantic Shifts in Political and Media
  Discourse

Words are Malleable: Computing Semantic Shifts in Political and Media Discourse

15 November 2017
H. Azarbonyad
Mostafa Dehghani
K. Beelen
Alexandra Arkut
maarten marx
J. Kamps
ArXiv (abs)PDFHTML

Papers citing "Words are Malleable: Computing Semantic Shifts in Political and Media Discourse"

14 / 14 papers shown
Title
Metadata Might Make Language Models Better
Metadata Might Make Language Models Better
K. Beelen
Daniel Alexander van Strien
AI4CE
58
0
0
18 Nov 2022
A Greek Parliament Proceedings Dataset for Computational Linguistics and
  Political Analysis
A Greek Parliament Proceedings Dataset for Computational Linguistics and Political Analysis
Konstantina Dritsa
Kaiti Thoma
John Pavlopoulos
Panos Louridas
AILaw
62
1
0
23 Oct 2022
Domain-Specific Word Embeddings with Structure Prediction
Domain-Specific Word Embeddings with Structure Prediction
Stephanie Brandl
D. Lassner
A. Baillot
Shinichi Nakajima
OODAI4TS
54
1
0
06 Oct 2022
Simple, Interpretable and Stable Method for Detecting Words with Usage
  Change across Corpora
Simple, Interpretable and Stable Method for Detecting Words with Usage Change across Corpora
Hila Gonen
Ganesh Jawahar
Djamé Seddah
Yoav Goldberg
80
66
0
28 Dec 2021
Capturing Stance Dynamics in Social Media: Open Challenges and Research
  Directions
Capturing Stance Dynamics in Social Media: Open Challenges and Research Directions
Rabab Alkhalifa
A. Zubiaga
83
21
0
01 Sep 2021
Neural Language Models for Nineteenth-Century English
Neural Language Models for Nineteenth-Century English
Kasra Hosseini
K. Beelen
Giovanni Colavizza
Mariona Coll Ardanuy
89
18
0
24 May 2021
How COVID-19 Is Changing Our Language : Detecting Semantic Shift in
  Twitter Word Embeddings
How COVID-19 Is Changing Our Language : Detecting Semantic Shift in Twitter Word Embeddings
Yanzhu Guo
Christos Xypolopoulos
Michalis Vazirgiannis
27
10
0
15 Feb 2021
QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical
  Semantics Classification in Italian
QMUL-SDS @ DIACR-Ita: Evaluating Unsupervised Diachronic Lexical Semantics Classification in Italian
Rabab Alkhalifa
Adam Tsakalidis
A. Zubiaga
Maria Liakata
40
1
0
05 Nov 2020
An Improved Historical Embedding without Alignment
An Improved Historical Embedding without Alignment
Xiaofei Xu
Ke Deng
Fei Hu
Li Li
AI4TS
31
0
0
19 Oct 2019
Generating Timelines by Modeling Semantic Change
Generating Timelines by Modeling Semantic Change
Guy D. Rosin
Kira Radinsky
55
7
0
21 Sep 2019
Using Word Embeddings to Examine Gender Bias in Dutch Newspapers,
  1950-1990
Using Word Embeddings to Examine Gender Bias in Dutch Newspapers, 1950-1990
M. Wevers
101
33
0
21 Jul 2019
Survey of Computational Approaches to Lexical Semantic Change
Survey of Computational Approaches to Lexical Semantic Change
Nina Tahmasebi
L. Borin
Adam Jatowt
115
164
0
15 Nov 2018
Short-Term Meaning Shift: A Distributional Exploration
Short-Term Meaning Shift: A Distributional Exploration
Marco Del Tredici
Raquel Fern´andez
Gemma Boleda
164
50
0
10 Sep 2018
Diachronic word embeddings and semantic shifts: a survey
Diachronic word embeddings and semantic shifts: a survey
Andrey Kutuzov
Lilja Øvrelid
Terrence Szymanski
Erik Velldal
AI4TS
95
304
0
09 Jun 2018
1