ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.08576
  4. Cited By
Variational Encoding of Complex Dynamics

Variational Encoding of Complex Dynamics

23 November 2017
Carlos X. Hernández
H. Wayment-Steele
Mohammad M. Sultan
B. Husic
Vijay S. Pande
    AI4CE
ArXivPDFHTML

Papers citing "Variational Encoding of Complex Dynamics"

20 / 20 papers shown
Title
Fast conformational clustering of extensive molecular dynamics
  simulation data
Fast conformational clustering of extensive molecular dynamics simulation data
Simon Hunkler
K. Diederichs
O. Kukharenko
Christine Peter
19
9
0
11 Jan 2023
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Ryan Lopez
P. Atzberger
AI4CE
34
8
0
10 Jun 2022
GraphVAMPNet, using graph neural networks and variational approach to
  markov processes for dynamical modeling of biomolecules
GraphVAMPNet, using graph neural networks and variational approach to markov processes for dynamical modeling of biomolecules
Mahdi Ghorbani
Samarjeet Prasad
Jeffery B. Klauda
B. Brooks
GNN
29
30
0
12 Jan 2022
Collective variable discovery in the age of machine learning: reality,
  hype and everything in between
Collective variable discovery in the age of machine learning: reality, hype and everything in between
S. Bhakat
AI4CE
34
25
0
06 Dec 2021
Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
Daniel Kramer
P. Bommer
Carlo Tombolini
G. Koppe
Daniel Durstewitz
BDL
AI4TS
AI4CE
27
19
0
04 Nov 2021
Deeptime: a Python library for machine learning dynamical models from
  time series data
Deeptime: a Python library for machine learning dynamical models from time series data
Moritz Hoffmann
Martin K. Scherer
Tim Hempel
Andreas Mardt
Brian M. de Silva
...
Stefan Klus
Hao Wu
N. Kutz
Steven L. Brunton
Frank Noé
AI4CE
33
101
0
28 Oct 2021
Coupling streaming AI and HPC ensembles to achieve 100-1000x faster
  biomolecular simulations
Coupling streaming AI and HPC ensembles to achieve 100-1000x faster biomolecular simulations
Alexander Brace
I. Yakushin
Heng Ma
Anda Trifan
T. Munson
Ian Foster
A. Ramanathan
Hyungro Lee
Matteo Turilli
S. Jha
AI4CE
32
19
0
10 Apr 2021
Artificial intelligence techniques for integrative structural biology of
  intrinsically disordered proteins
Artificial intelligence techniques for integrative structural biology of intrinsically disordered proteins
A. Ramanathan
Henglong Ma
Akash Parvatikar
C. Chennubhotla
AI4CE
31
40
0
01 Dec 2020
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with
  a Kernel Approach
Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with a Kernel Approach
Jiang Wang
Stefan Chmiela
K. Müller
Frank Noè
C. Clementi
10
46
0
04 May 2020
Differentiable Molecular Simulations for Control and Learning
Differentiable Molecular Simulations for Control and Learning
Wujie Wang
Simon Axelrod
Rafael Gómez-Bombarelli
AI4CE
111
49
0
27 Feb 2020
Interpretable Embeddings From Molecular Simulations Using Gaussian
  Mixture Variational Autoencoders
Interpretable Embeddings From Molecular Simulations Using Gaussian Mixture Variational Autoencoders
Yasemin Bozkurt Varolgunes
T. Bereau
J. F. Rudzinski
DRL
12
42
0
22 Dec 2019
Machine learning for molecular simulation
Machine learning for molecular simulation
Frank Noé
A. Tkatchenko
K. Müller
C. Clementi
AI4CE
24
642
0
07 Nov 2019
DeepDriveMD: Deep-Learning Driven Adaptive Molecular Simulations for
  Protein Folding
DeepDriveMD: Deep-Learning Driven Adaptive Molecular Simulations for Protein Folding
Hyungro Lee
Heng Ma
Matteo Turilli
D. Bhowmik
S. Jha
A. Ramanathan
AI4CE
6
70
0
17 Sep 2019
Extracting Interpretable Physical Parameters from Spatiotemporal Systems
  using Unsupervised Learning
Extracting Interpretable Physical Parameters from Spatiotemporal Systems using Unsupervised Learning
Peter Y. Lu
Samuel Kim
Marin Soljacic
AI4CE
22
59
0
13 Jul 2019
Capabilities and Limitations of Time-lagged Autoencoders for Slow Mode
  Discovery in Dynamical Systems
Capabilities and Limitations of Time-lagged Autoencoders for Slow Mode Discovery in Dynamical Systems
Wei Chen
Hythem Sidky
Andrew L. Ferguson
33
36
0
02 Jun 2019
Machine Learning for Molecular Dynamics on Long Timescales
Machine Learning for Molecular Dynamics on Long Timescales
Frank Noé
AI4CE
25
32
0
18 Dec 2018
Note: Variational Encoding of Protein Dynamics Benefits from Maximizing
  Latent Autocorrelation
Note: Variational Encoding of Protein Dynamics Benefits from Maximizing Latent Autocorrelation
H. Wayment-Steele
Vijay S. Pande
DRL
8
6
0
17 Mar 2018
Automated design of collective variables using supervised machine
  learning
Automated design of collective variables using supervised machine learning
Mohammad M. Sultan
Vijay S. Pande
24
121
0
28 Feb 2018
Time-lagged autoencoders: Deep learning of slow collective variables for
  molecular kinetics
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
C. Wehmeyer
Frank Noé
AI4CE
BDL
111
356
0
30 Oct 2017
Variational Koopman models: slow collective variables and molecular
  kinetics from short off-equilibrium simulations
Variational Koopman models: slow collective variables and molecular kinetics from short off-equilibrium simulations
Hao Wu
Feliks Nuske
Fabian Paul
Stefan Klus
P. Koltai
Frank Noé
107
126
0
20 Oct 2016
1