Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.08757
Cited By
Deep Expander Networks: Efficient Deep Networks from Graph Theory
23 November 2017
Ameya Prabhu
G. Varma
A. Namboodiri
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Expander Networks: Efficient Deep Networks from Graph Theory"
11 / 11 papers shown
Title
Brain-inspired sparse training enables Transformers and LLMs to perform as fully connected
Yingtao Zhang
Jialin Zhao
Wenjing Wu
Ziheng Liao
Umberto Michieli
C. Cannistraci
48
0
0
31 Jan 2025
Graph Expansion in Pruned Recurrent Neural Network Layers Preserve Performance
Suryam Arnav Kalra
Arindam Biswas
Pabitra Mitra
Biswajit Basu
GNN
31
0
0
17 Mar 2024
Expander Graph Propagation
Andreea Deac
Marc Lackenby
Petar Velivcković
96
52
0
06 Oct 2022
Don't Be So Dense: Sparse-to-Sparse GAN Training Without Sacrificing Performance
Shiwei Liu
Yuesong Tian
Tianlong Chen
Li Shen
34
8
0
05 Mar 2022
Naming Schema for a Human Brain-Scale Neural Network
Morgan Schaefer
Lauren Michelin
J. Kepner
3DH
14
2
0
22 Sep 2021
Partitioning sparse deep neural networks for scalable training and inference
G. Demirci
Hakan Ferhatosmanoglu
18
11
0
23 Apr 2021
Sparse Training Theory for Scalable and Efficient Agents
D. Mocanu
Elena Mocanu
T. Pinto
Selima Curci
Phuong H. Nguyen
M. Gibescu
D. Ernst
Z. Vale
45
17
0
02 Mar 2021
Graph Structure of Neural Networks
Jiaxuan You
J. Leskovec
Kaiming He
Saining Xie
GNN
19
136
0
13 Jul 2020
Pre-Defined Sparse Neural Networks with Hardware Acceleration
Sourya Dey
Kuan-Wen Huang
P. Beerel
K. Chugg
41
24
0
04 Dec 2018
Dense xUnit Networks
I. Kligvasser
T. Michaeli
13
3
0
27 Nov 2018
Sparsely Aggregated Convolutional Networks
Ligeng Zhu
Ruizhi Deng
Michael Maire
Zhiwei Deng
Greg Mori
P. Tan
3DPC
30
9
0
18 Jan 2018
1