Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1711.08856
Cited By
v1
v2
v3 (latest)
Critical Learning Periods in Deep Neural Networks
24 November 2017
Alessandro Achille
Matteo Rovere
Stefano Soatto
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Critical Learning Periods in Deep Neural Networks"
50 / 85 papers shown
Intrinsic preservation of plasticity in continual quantum learning
International Conference on Machine Learning (ICML), 2024
Yu-Qin Chen
Shi-Xin Zhang
CLL
247
0
0
21 Nov 2025
MaP: A Unified Framework for Reliable Evaluation of Pre-training Dynamics
Jiapeng Wang
Changxin Tian
Kunlong Chen
Ziqi Liu
Jiaxin Mao
Wayne Xin Zhao
Zhiqiang Zhang
Jun Zhou
114
0
0
10 Oct 2025
On the Occurence of Critical Learning Periods in Neural Networks
Stanisław Pawlak
75
0
0
09 Oct 2025
Improving Chain-of-Thought Efficiency for Autoregressive Image Generation
Zeqi Gu
Markos Georgopoulos
Xiaoliang Dai
Marjan Ghazvininejad
Chu Wang
...
Zecheng He
Zijian He
Jiawei Zhou
Abe Davis
Jialiang Wang
LRM
142
0
0
07 Oct 2025
SSVIF: Self-Supervised Segmentation-Oriented Visible and Infrared Image Fusion
Zixian Zhao
Xingchen Zhang
128
0
0
26 Sep 2025
Contextual Learning for Anomaly Detection in Tabular Data
Spencer King
Zhilu Zhang
Ruofan Yu
Baris Coskun
Wei Ding
Qian Cui
119
0
0
10 Sep 2025
On Using Large-Batches in Federated Learning
Sahil Tyagi
FedML
114
0
0
05 Sep 2025
Fisher information flow in artificial neural networks
Physical Review X (PRX), 2025
Maximilian Weimar
Lukas M. Rachbauer
I. Starshynov
Daniele Faccio
Linara Adilova
Dorian Bouchet
Stefan Rotter
192
1
0
02 Sep 2025
What Can Grokking Teach Us About Learning Under Nonstationarity?
Clare Lyle
Gharda Sokar
Razvan Pascanu
András Gyorgy
143
3
0
26 Jul 2025
Hidden Breakthroughs in Language Model Training
Sara Kangaslahti
Elan Rosenfeld
Naomi Saphra
222
6
0
18 Jun 2025
New Evidence of the Two-Phase Learning Dynamics of Neural Networks
Zhanpeng Zhou
Yongyi Yang
Mahito Sugiyama
Junchi Yan
211
2
0
20 May 2025
AdaDim: Dimensionality Adaptation for SSL Representational Dynamics
Kiran Kokilepersaud
Mohit Prabhushankar
Ghassan AlRegib
372
1
0
18 May 2025
Adaptively Point-weighting Curriculum Learning
Wensheng Li
Hao Wang
Ruifeng Zhou
Hanting Guan
Chao Zhang
Dacheng Tao
Dacheng Tao
ODL
251
0
0
03 May 2025
Emergence of Computational Structure in a Neural Network Physics Simulator
Rohan Hitchcock
Gary W. Delaney
J. Manton
Richard Scalzo
Jingge Zhu
244
1
0
16 Apr 2025
Enlightenment Period Improving DNN Performance
Tiantian Liu
Meng Wan
Meng Wan
Jue Wang
223
0
0
02 Apr 2025
Generalization Guarantees for Representation Learning via Data-Dependent Gaussian Mixture Priors
International Conference on Learning Representations (ICLR), 2025
Romain Chor
Milad Sefidgaran
Piotr Krasnowski
498
3
0
21 Feb 2025
Parseval Regularization for Continual Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2024
Wesley Chung
Lynn Cherif
David Meger
Doina Precup
CLL
252
8
0
10 Dec 2024
Self-Normalized Resets for Plasticity in Continual Learning
International Conference on Learning Representations (ICLR), 2024
Vivek F. Farias
Adam D. Jozefiak
CLL
307
4
0
26 Oct 2024
One system for learning and remembering episodes and rules
Joshua T. S. Hewson
Sabina J. Sloman
Marina Dubova
CLL
148
0
0
08 Jul 2024
On the Limitations of Compute Thresholds as a Governance Strategy
Sara Hooker
420
26
0
08 Jul 2024
Critical Learning Periods: Leveraging Early Training Dynamics for Efficient Data Pruning
E. Chimoto
Jay Gala
Orevaoghene Ahia
Julia Kreutzer
Bruce A. Bassett
Sara Hooker
VLM
362
6
0
29 May 2024
Phase Transitions in the Output Distribution of Large Language Models
Julian Arnold
Flemming Holtorf
Frank Schafer
Niels Lörch
263
3
0
27 May 2024
Can We Understand Plasticity Through Neural Collapse?
Guglielmo Bonifazi
Iason Chalas
Gian Hess
Jakub Lucki
AI4CE
273
2
0
03 Apr 2024
The Garden of Forking Paths: Observing Dynamic Parameters Distribution in Large Language Models
Carlo Nicolini
Jacopo Staiano
Bruno Lepri
Raffaele Marino
MoE
165
1
0
13 Mar 2024
Overestimation, Overfitting, and Plasticity in Actor-Critic: the Bitter Lesson of Reinforcement Learning
Michal Nauman
Michal Bortkiewicz
Piotr Milo's
Tomasz Trzciñski
M. Ostaszewski
Marek Cygan
OffRL
343
41
0
01 Mar 2024
Curvature-Informed SGD via General Purpose Lie-Group Preconditioners
Omead Brandon Pooladzandi
Xi-Lin Li
239
10
0
07 Feb 2024
Fast gradient-free activation maximization for neurons in spiking neural networks
N. Pospelov
Andrei Chertkov
Maxim Beketov
Ivan Oseledets
Konstantin Anokhin
200
3
0
28 Dec 2023
Flexible Communication for Optimal Distributed Learning over Unpredictable Networks
BigData Congress [Services Society] (BSS), 2023
S. Tyagi
Martin Swany
416
2
0
05 Dec 2023
The Shape of Learning: Anisotropy and Intrinsic Dimensions in Transformer-Based Models
Findings (Findings), 2023
Anton Razzhigaev
Matvey Mikhalchuk
Elizaveta Goncharova
Ivan Oseledets
Denis Dimitrov
Andrey Kuznetsov
313
22
0
10 Nov 2023
An effective theory of collective deep learning
Lluís Arola-Fernández
Lucas Lacasa
FedML
AI4CE
202
5
0
19 Oct 2023
Maintaining Plasticity in Continual Learning via Regenerative Regularization
Saurabh Kumar
Henrik Marklund
Benjamin Van Roy
CLL
KELM
336
35
0
23 Aug 2023
Latent State Models of Training Dynamics
Michael Y. Hu
Angelica Chen
Naomi Saphra
Dong Wang
356
16
0
18 Aug 2023
Accelerating Distributed ML Training via Selective Synchronization
IEEE International Conference on Cluster Computing (CLUSTER), 2023
S. Tyagi
Martin Swany
FedML
304
7
0
16 Jul 2023
Single-Stage Heavy-Tailed Food Classification
International Conference on Information Photonics (ICIP), 2023
Jiangpeng He
Fengqing Zhu
249
13
0
01 Jul 2023
Let There Be Order: Rethinking Ordering in Autoregressive Graph Generation
Jie Bu
Kazi Sajeed Mehrab
Anuj Karpatne
225
5
0
24 May 2023
GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training
IEEE International Conference on Cloud Computing (CLOUD), 2023
S. Tyagi
Martin Swany
261
7
0
20 May 2023
To Compress or Not to Compress- Self-Supervised Learning and Information Theory: A Review
Entropy (Entropy), 2023
Ravid Shwartz-Ziv
Yann LeCun
SSL
557
102
0
19 Apr 2023
Re-Weighted Softmax Cross-Entropy to Control Forgetting in Federated Learning
G. Legate
Lucas Caccia
Eugene Belilovsky
FedML
210
14
0
11 Apr 2023
Identifying Equivalent Training Dynamics
Neural Information Processing Systems (NeurIPS), 2023
William T. Redman
J. M. Bello-Rivas
M. Fonoberova
Ryan Mohr
Ioannis G. Kevrekidis
Igor Mezić
302
8
0
17 Feb 2023
ScaDLES: Scalable Deep Learning over Streaming data at the Edge
S. Tyagi
Martin Swany
244
8
0
21 Jan 2023
Accelerating Dataset Distillation via Model Augmentation
Computer Vision and Pattern Recognition (CVPR), 2022
Lei Zhang
Jie M. Zhang
Bowen Lei
Subhabrata Mukherjee
Xiang Pan
Bo Zhao
Caiwen Ding
Yongbin Li
Dongkuan Xu
DD
350
75
0
12 Dec 2022
LOFT: Finding Lottery Tickets through Filter-wise Training
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Qihan Wang
Chen Dun
Fangshuo Liao
C. Jermaine
Anastasios Kyrillidis
181
3
0
28 Oct 2022
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Journal of machine learning research (JMLR), 2022
Brian Bartoldson
B. Kailkhura
Davis W. Blalock
317
64
0
13 Oct 2022
Exploring Low Rank Training of Deep Neural Networks
Siddhartha Rao Kamalakara
Acyr Locatelli
Bharat Venkitesh
Jimmy Ba
Y. Gal
Aidan Gomez
167
31
0
27 Sep 2022
Metadata Archaeology: Unearthing Data Subsets by Leveraging Training Dynamics
International Conference on Learning Representations (ICLR), 2022
Shoaib Ahmed Siddiqui
Nitarshan Rajkumar
Tegan Maharaj
David M. Krueger
Sara Hooker
255
33
0
20 Sep 2022
On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
Rohan Anil
S. Gadanho
Danya Huang
Nijith Jacob
Zhuoshu Li
...
Cristina Pop
Kevin Regan
G. Shamir
Rakesh Shivanna
Qiqi Yan
3DV
244
47
0
12 Sep 2022
On the Importance of Critical Period in Multi-stage Reinforcement Learning
Junseok Park
Inwoo Hwang
Min Whoo Lee
Hyunseok Oh
Minsu Lee
Youngki Lee
Byoung-Tak Zhang
OffRL
141
0
0
09 Aug 2022
Winning the Lottery Ahead of Time: Efficient Early Network Pruning
International Conference on Machine Learning (ICML), 2022
John Rachwan
Daniel Zügner
Bertrand Charpentier
Simon Geisler
Morgane Ayle
Stephan Günnemann
241
33
0
21 Jun 2022
It's All In the Teacher: Zero-Shot Quantization Brought Closer to the Teacher
Computer Vision and Pattern Recognition (CVPR), 2022
Kanghyun Choi
Hye Yoon Lee
Deokki Hong
Joonsang Yu
Noseong Park
Youngsok Kim
Jinho Lee
MQ
317
36
0
31 Mar 2022
Towards understanding deep learning with the natural clustering prior
Simon Carbonnelle
180
0
0
15 Mar 2022
1
2
Next