ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.09492
  4. Cited By
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and
  Robust Subspace Recovery

Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

26 November 2017
Namrata Vaswani
T. Bouwmans
S. Javed
Praneeth Narayanamurthy
    OOD
ArXivPDFHTML

Papers citing "Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery"

45 / 45 papers shown
Title
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
24
2
0
12 May 2025
Computational Safety for Generative AI: A Signal Processing Perspective
Computational Safety for Generative AI: A Signal Processing Perspective
Pin-Yu Chen
66
1
0
18 Feb 2025
SubTrack your Grad: Gradient Subspace Tracking for Memory and Time Efficient Full-Parameter LLM Training
SubTrack your Grad: Gradient Subspace Tracking for Memory and Time Efficient Full-Parameter LLM Training
Sahar Rajabi
Nayeema Nonta
Sirisha Rambhatla
85
0
0
03 Feb 2025
FADE: A Dataset for Detecting Falling Objects around Buildings in Video
FADE: A Dataset for Detecting Falling Objects around Buildings in Video
Zhigang Tu
Zitao Gao
Zhengbo Zhang
Chunluan Zhou
Junsong Yuan
Bo Du
28
0
0
11 Aug 2024
Learning Low-dimensional Latent Dynamics from High-dimensional
  Observations: Non-asymptotics and Lower Bounds
Learning Low-dimensional Latent Dynamics from High-dimensional Observations: Non-asymptotics and Lower Bounds
Yuyang Zhang
Shahriar Talebi
Na Li
29
1
0
09 May 2024
Subspace Defense: Discarding Adversarial Perturbations by Learning a
  Subspace for Clean Signals
Subspace Defense: Discarding Adversarial Perturbations by Learning a Subspace for Clean Signals
Rui Zheng
Yuhao Zhou
Zhiheng Xi
Tao Gui
Qi Zhang
Xuanjing Huang
AAML
24
0
0
24 Mar 2024
CURATRON: Complete Robust Preference Data for Robust Alignment of Large
  Language Models
CURATRON: Complete Robust Preference Data for Robust Alignment of Large Language Models
S. Nguyen
Uma-Naresh Niranjan
Theja Tulabandhula
23
0
0
05 Mar 2024
Learning Spatial-Temporal Regularized Tensor Sparse RPCA for Background
  Subtraction
Learning Spatial-Temporal Regularized Tensor Sparse RPCA for Background Subtraction
B. Alawode
S. Javed
18
4
0
27 Sep 2023
Byzantine-Resilient Federated PCA and Low Rank Column-wise Sensing
Byzantine-Resilient Federated PCA and Low Rank Column-wise Sensing
Ankit Pratap Singh
Namrata Vaswani
16
0
0
25 Sep 2023
ALPCAH: Sample-wise Heteroscedastic PCA with Tail Singular Value
  Regularization
ALPCAH: Sample-wise Heteroscedastic PCA with Tail Singular Value Regularization
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
13
0
0
06 Jul 2023
The Ideal Continual Learner: An Agent That Never Forgets
The Ideal Continual Learner: An Agent That Never Forgets
Liangzu Peng
Paris V. Giampouras
René Vidal
CLL
106
26
0
29 Apr 2023
Learning Temporal Distribution and Spatial Correlation Towards Universal
  Moving Object Segmentation
Learning Temporal Distribution and Spatial Correlation Towards Universal Moving Object Segmentation
Guanfang Dong
Chenqiu Zhao
Xichen Pan
Anup Basu
VOS
8
3
0
19 Apr 2023
Dynamic Subspace Estimation with Grassmannian Geodesics
Dynamic Subspace Estimation with Grassmannian Geodesics
Cameron J. Blocker
Haroon Raja
Jeffrey A. Fessler
Laura Balzano
22
4
0
26 Mar 2023
Less is Better: Recovering Intended-Feature Subspace to Robustify NLU
  Models
Less is Better: Recovering Intended-Feature Subspace to Robustify NLU Models
Ting Wu
Tao Gui
32
5
0
16 Sep 2022
PS-Net: Learned Partially Separable Model for Dynamic MR Imaging
PS-Net: Learned Partially Separable Model for Dynamic MR Imaging
Chentao Cao
Zhuoxu Cui
Qingyong Zhu
Congcong Liu
Dong Liang
Yanjie Zhu
11
0
0
09 May 2022
Exact Decomposition of Joint Low Rankness and Local Smoothness Plus
  Sparse Matrices
Exact Decomposition of Joint Low Rankness and Local Smoothness Plus Sparse Matrices
Jiangjun Peng
Yao Wang
Hongying Zhang
Jianjun Wang
Deyu Meng
28
51
0
29 Jan 2022
FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component
  Analysis
FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component Analysis
Arpita Gang
W. Bajwa
42
16
0
27 Aug 2021
Graph-Embedded Subspace Support Vector Data Description
Graph-Embedded Subspace Support Vector Data Description
Fahad Sohrab
Alexandros Iosifidis
M. Gabbouj
Jenni Raitoharju
13
14
0
29 Apr 2021
Universal Background Subtraction based on Arithmetic Distribution Neural
  Network
Universal Background Subtraction based on Arithmetic Distribution Neural Network
Chenqiu Zhao
Kang-Ting Hu
Anup Basu
13
21
0
16 Apr 2021
Robust Principal Component Analysis: A Median of Means Approach
Robust Principal Component Analysis: A Median of Means Approach
Debolina Paul
Saptarshi Chakraborty
Swagatam Das
11
8
0
05 Feb 2021
Unlabeled Principal Component Analysis and Matrix Completion
Unlabeled Principal Component Analysis and Matrix Completion
Yu Yao
Liangzu Peng
M. Tsakiris
23
13
0
23 Jan 2021
A Deep-Unfolded Reference-Based RPCA Network For Video
  Foreground-Background Separation
A Deep-Unfolded Reference-Based RPCA Network For Video Foreground-Background Separation
Huynh Van Luong
Boris Joukovsky
Yonina C. Eldar
Nikos Deligiannis
13
15
0
02 Oct 2020
Graph Embedding with Data Uncertainty
Graph Embedding with Data Uncertainty
Firas Laakom
Jenni Raitoharju
Nikolaos Passalis
Alexandros Iosifidis
M. Gabbouj
16
5
0
01 Sep 2020
Fast Robust Subspace Tracking via PCA in Sparse Data-Dependent Noise
Fast Robust Subspace Tracking via PCA in Sparse Data-Dependent Noise
Praneeth Narayanamurthy
Namrata Vaswani
22
10
0
14 Jun 2020
Hyper RPCA: Joint Maximum Correntropy Criterion and Laplacian Scale
  Mixture Modeling On-the-Fly for Moving Object Detection
Hyper RPCA: Joint Maximum Correntropy Criterion and Laplacian Scale Mixture Modeling On-the-Fly for Moving Object Detection
Zerui Shao
Yi-fei Pu
Jiliu Zhou
B. Wen
Yi Zhang
8
8
0
14 Jun 2020
G-LBM:Generative Low-dimensional Background Model Estimation from Video
  Sequences
G-LBM:Generative Low-dimensional Background Model Estimation from Video Sequences
B. Rezaei
Amirreza Farnoosh
Sarah Ostadabbas
18
10
0
16 Mar 2020
Summarizing the performances of a background subtraction algorithm
  measured on several videos
Summarizing the performances of a background subtraction algorithm measured on several videos
Sébastien Piérard
Marc Van Droogenbroeck
11
3
0
13 Feb 2020
Deep Autoencoders with Value-at-Risk Thresholding for Unsupervised
  Anomaly Detection
Deep Autoencoders with Value-at-Risk Thresholding for Unsupervised Anomaly Detection
A. Akhriev
Jakub Mareˇcek
UQCV
14
4
0
09 Dec 2019
On Universal Features for High-Dimensional Learning and Inference
On Universal Features for High-Dimensional Learning and Inference
Shao-Lun Huang
A. Makur
G. Wornell
Lizhong Zheng
11
53
0
20 Nov 2019
On-line Non-Convex Constrained Optimization
On-line Non-Convex Constrained Optimization
Olivier Massicot
Jakub Mareˇcek
14
13
0
16 Sep 2019
Background Subtraction using Adaptive Singular Value Decomposition
Background Subtraction using Adaptive Singular Value Decomposition
Günther Reitberger
T. Sauer
16
8
0
28 Jun 2019
Sparse Equisigned PCA: Algorithms and Performance Bounds in the Noisy
  Rank-1 Setting
Sparse Equisigned PCA: Algorithms and Performance Bounds in the Noisy Rank-1 Setting
Arvind Prasadan
R. Nadakuditi
D. Paul
13
0
0
22 May 2019
RES-PCA: A Scalable Approach to Recovering Low-rank Matrices
RES-PCA: A Scalable Approach to Recovering Low-rank Matrices
Chong Peng
Chenglizhao Chen
Zhao Kang
Jianbo Li
Q. Cheng
17
25
0
16 Apr 2019
Background Subtraction in Real Applications: Challenges, Current Models
  and Future Directions
Background Subtraction in Real Applications: Challenges, Current Models and Future Directions
T. Bouwmans
B. G. García
8
268
0
11 Jan 2019
Deep Neural Network Concepts for Background Subtraction: A Systematic
  Review and Comparative Evaluation
Deep Neural Network Concepts for Background Subtraction: A Systematic Review and Comparative Evaluation
T. Bouwmans
S. Javed
M. Sultana
Soon Ki Jung
11
316
0
13 Nov 2018
CVABS: Moving Object Segmentation with Common Vector Approach for Videos
CVABS: Moving Object Segmentation with Common Vector Approach for Videos
Ş. Işık
Kemal Özkan
Ö. N. Gerek
18
10
0
19 Oct 2018
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
Yuejie Chi
Yue M. Lu
Yuxin Chen
21
416
0
25 Sep 2018
Pursuit of Low-Rank Models of Time-Varying Matrices Robust to Sparse and
  Measurement Noise
Pursuit of Low-Rank Models of Time-Varying Matrices Robust to Sparse and Measurement Noise
A. Akhriev
Jakub Mareˇcek
Andrea Simonetto
15
8
0
10 Sep 2018
Streaming PCA and Subspace Tracking: The Missing Data Case
Streaming PCA and Subspace Tracking: The Missing Data Case
Laura Balzano
Yuejie Chi
Yue M. Lu
13
82
0
12 Jun 2018
Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees
  Embedded
Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded
Miten Mistry
Dimitrios Letsios
G. Krennrich
Robert M. Lee
Ruth Misener
OffRL
18
50
0
02 Mar 2018
Static and Dynamic Robust PCA and Matrix Completion: A Review
Static and Dynamic Robust PCA and Matrix Completion: A Review
Namrata Vaswani
Praneeth Narayanamurthy
14
72
0
01 Mar 2018
Panoramic Robust PCA for Foreground-Background Separation on Noisy,
  Free-Motion Camera Video
Panoramic Robust PCA for Foreground-Background Separation on Noisy, Free-Motion Camera Video
Brian E. Moore
Chen Gao
R. Nadakuditi
26
38
0
18 Dec 2017
Provable Dynamic Robust PCA or Robust Subspace Tracking
Provable Dynamic Robust PCA or Robust Subspace Tracking
Praneeth Narayanamurthy
Namrata Vaswani
9
49
0
24 May 2017
Correlated-PCA: Principal Components' Analysis when Data and Noise are
  Correlated
Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated
Namrata Vaswani
Han Guo
20
25
0
15 Aug 2016
Learning Robust Low-Rank Representations
Learning Robust Low-Rank Representations
Pablo Sprechmann
A. Bronstein
Guillermo Sapiro
37
10
0
27 Sep 2012
1