Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.10467
Cited By
v1
v2
v3 (latest)
Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution
28 November 2017
Cong Ma
Kaizheng Wang
Yuejie Chi
Yuxin Chen
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution"
50 / 86 papers shown
Title
Euclidean Distance Matrix Completion via Asymmetric Projected Gradient Descent
Yicheng Li
Xinghua Sun
77
0
0
28 Apr 2025
Non-convex matrix sensing: Breaking the quadratic rank barrier in the sample complexity
Dominik Stoger
Yizhe Zhu
84
2
0
20 Aug 2024
Leave-One-Out Analysis for Nonconvex Robust Matrix Completion with General Thresholding Functions
Tianming Wang
Ke Wei
59
1
0
28 Jul 2024
A Gauss-Newton Approach for Min-Max Optimization in Generative Adversarial Networks
Neel Mishra
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
GAN
58
1
0
10 Apr 2024
Adaptive Consensus Optimization Method for GANs
Sachin Kumar Danisetty
Santhosh Reddy Mylaram
Pawan Kumar
ODL
38
3
0
20 Apr 2023
How robust is randomized blind deconvolution via nuclear norm minimization against adversarial noise?
Julia Kostin
Felix Krahmer
Dominik Stöger
51
0
0
17 Mar 2023
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
71
4
0
10 Mar 2023
Approximate message passing from random initialization with applications to
Z
2
\mathbb{Z}_{2}
Z
2
synchronization
Gen Li
Wei Fan
Yuting Wei
91
12
0
07 Feb 2023
The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing
Xingyu Xu
Yandi Shen
Yuejie Chi
Cong Ma
120
37
0
02 Feb 2023
Rank-1 Matrix Completion with Gradient Descent and Small Random Initialization
Daesung Kim
Hye Won Chung
86
2
0
19 Dec 2022
Learning Transition Operators From Sparse Space-Time Samples
C. Kümmerle
Mauro Maggioni
Sui Tang
57
1
0
01 Dec 2022
Towards a Theoretical Foundation of Policy Optimization for Learning Control Policies
Bin Hu
Kai Zhang
Na Li
M. Mesbahi
Maryam Fazel
Tamer Bacsar
161
27
0
10 Oct 2022
Nonconvex Matrix Factorization is Geodesically Convex: Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Perspective
Yuetian Luo
Nicolas García Trillos
44
7
0
29 Sep 2022
Gradient-Free Methods for Deterministic and Stochastic Nonsmooth Nonconvex Optimization
Tianyi Lin
Zeyu Zheng
Michael I. Jordan
110
55
0
12 Sep 2022
Sudakov-Fernique post-AMP, and a new proof of the local convexity of the TAP free energy
Michael Celentano
89
21
0
19 Aug 2022
Variational Bayesian inference for CP tensor completion with side information
S. Budzinskiy
N. Zamarashkin
47
2
0
24 Jun 2022
What is a Good Metric to Study Generalization of Minimax Learners?
Asuman Ozdaglar
S. Pattathil
Jiawei Zhang
Kai Zhang
56
14
0
09 Jun 2022
Model-Based Reinforcement Learning for Offline Zero-Sum Markov Games
Yuling Yan
Gen Li
Yuxin Chen
Jianqing Fan
OffRL
102
11
0
08 Jun 2022
Synthetically Controlled Bandits
Vivek Farias
C. Moallemi
Tianyi Peng
Andrew Zheng
85
13
0
14 Feb 2022
On Asymptotic Linear Convergence of Projected Gradient Descent for Constrained Least Squares
Trung Vu
Raviv Raich
52
13
0
22 Dec 2021
OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
OODD
40
6
0
28 Oct 2021
On Geometric Connections of Embedded and Quotient Geometries in Riemannian Fixed-rank Matrix Optimization
Yuetian Luo
Xudong Li
Xinmiao Zhang
44
6
0
23 Oct 2021
Factorization Approach for Low-complexity Matrix Completion Problems: Exponential Number of Spurious Solutions and Failure of Gradient Methods
Baturalp Yalcin
Haixiang Zhang
Javad Lavaei
Somayeh Sojoudi
131
13
0
19 Oct 2021
Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization
Yuetian Luo
Xudong Li
Anru R. Zhang
72
11
0
03 Aug 2021
Inference for Heteroskedastic PCA with Missing Data
Yuling Yan
Yuxin Chen
Jianqing Fan
122
19
0
26 Jul 2021
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
80
78
0
28 Jun 2021
GNMR: A provable one-line algorithm for low rank matrix recovery
Pini Zilber
B. Nadler
133
14
0
24 Jun 2021
Learning Treatment Effects in Panels with General Intervention Patterns
Vivek F. Farias
Andrew A. Li
Tianyi Peng
CML
78
10
0
05 Jun 2021
A Scalable Second Order Method for Ill-Conditioned Matrix Completion from Few Samples
C. Kümmerle
C. M. Verdun
68
23
0
03 Jun 2021
Entrywise Estimation of Singular Vectors of Low-Rank Matrices with Heteroskedasticity and Dependence
Joshua Agterberg
Zachary Lubberts
Carey Priebe
99
21
0
27 May 2021
Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation from Incomplete Measurements
Tian Tong
Cong Ma
Ashley Prater-Bennette
Erin E. Tripp
Yuejie Chi
108
33
0
29 Apr 2021
Low-rank Tensor Estimation via Riemannian Gauss-Newton: Statistical Optimality and Second-Order Convergence
Yuetian Luo
Anru R. Zhang
157
20
0
24 Apr 2021
On the Local Linear Rate of Consensus on the Stiefel Manifold
Shixiang Chen
Alfredo García
Mingyi Hong
Shahin Shahrampour
61
14
0
22 Jan 2021
Stochastic Approximation for Online Tensorial Independent Component Analysis
C. J. Li
Michael I. Jordan
59
2
0
28 Dec 2020
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
153
173
0
15 Dec 2020
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
65
16
0
17 Nov 2020
Low-Rank Matrix Recovery with Scaled Subgradient Methods: Fast and Robust Convergence Without the Condition Number
Tian Tong
Cong Ma
Yuejie Chi
95
56
0
26 Oct 2020
Quickly Finding a Benign Region via Heavy Ball Momentum in Non-Convex Optimization
Jun-Kun Wang
Jacob D. Abernethy
101
7
0
04 Oct 2020
Low-rank matrix recovery with non-quadratic loss: projected gradient method and regularity projection oracle
Lijun Ding
Yuqian Zhang
Yudong Chen
37
1
0
31 Aug 2020
From Symmetry to Geometry: Tractable Nonconvex Problems
Yuqian Zhang
Qing Qu
John N. Wright
87
45
0
14 Jul 2020
Non-Convex Exact Community Recovery in Stochastic Block Model
Peng Wang
Zirui Zhou
Anthony Man-Cho So
65
9
0
29 Jun 2020
Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Ayush Sekhari
Karthik Sridharan
135
53
0
24 Jun 2020
Non-Convex Structured Phase Retrieval
Namrata Vaswani
50
15
0
23 Jun 2020
Good Classifiers are Abundant in the Interpolating Regime
Ryan Theisen
Jason M. Klusowski
Michael W. Mahoney
49
2
0
22 Jun 2020
Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimality
Changxiao Cai
H. Vincent Poor
Yuxin Chen
118
23
0
15 Jun 2020
Exit Time Analysis for Approximations of Gradient Descent Trajectories Around Saddle Points
Rishabh Dixit
Mert Gurbuzbalaban
W. Bajwa
31
3
0
01 Jun 2020
Breaking the Sample Size Barrier in Model-Based Reinforcement Learning with a Generative Model
Gen Li
Yuting Wei
Yuejie Chi
Yuxin Chen
158
131
0
26 May 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
104
120
0
18 May 2020
Nonconvex Matrix Completion with Linearly Parameterized Factors
Ji Chen
Xiaodong Li
Zongming Ma
45
3
0
29 Mar 2020
The estimation error of general first order methods
Michael Celentano
Andrea Montanari
Yuchen Wu
64
46
0
28 Feb 2020
1
2
Next