ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.11280
  4. Cited By
How Deep Are Deep Gaussian Processes?

How Deep Are Deep Gaussian Processes?

30 November 2017
Matthew M. Dunlop
Mark Girolami
Andrew M. Stuart
A. Teckentrup
    GP
ArXivPDFHTML

Papers citing "How Deep Are Deep Gaussian Processes?"

30 / 30 papers shown
Title
STRIDE: Sparse Techniques for Regression in Deep Gaussian Processes
STRIDE: Sparse Techniques for Regression in Deep Gaussian Processes
Simon Urbainczyk
Aretha L. Teckentrup
Jonas Latz
GP
17
0
0
16 May 2025
Spatial Bayesian Neural Networks
Spatial Bayesian Neural Networks
A. Zammit‐Mangion
Michael D. Kaminski
Ba-Hien Tran
Maurizio Filippone
Noel Cressie
BDL
20
7
0
16 Nov 2023
Bayes Linear Analysis for Statistical Modelling with Uncertain Inputs
Bayes Linear Analysis for Statistical Modelling with Uncertain Inputs
Samuel E. Jackson
D. Woods
16
0
0
09 May 2023
Bayesian inference with finitely wide neural networks
Bayesian inference with finitely wide neural networks
Chi-Ken Lu
BDL
37
0
0
06 Mar 2023
Sequential Estimation of Gaussian Process-based Deep State-Space Models
Sequential Estimation of Gaussian Process-based Deep State-Space Models
Yuhao Liu
Marzieh Ajirak
Petar M. Djurić
26
12
0
29 Jan 2023
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
29
0
0
27 Jun 2022
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
Relaxed Gaussian process interpolation: a goal-oriented approach to Bayesian optimization
S. Petit
Julien Bect
E. Vázquez
49
1
0
07 Jun 2022
Deep neural networks with dependent weights: Gaussian Process mixture
  limit, heavy tails, sparsity and compressibility
Deep neural networks with dependent weights: Gaussian Process mixture limit, heavy tails, sparsity and compressibility
Hoileong Lee
Fadhel Ayed
Paul Jung
Juho Lee
Hongseok Yang
François Caron
48
10
0
17 May 2022
Bayesian Deep Learning with Multilevel Trace-class Neural Networks
Bayesian Deep Learning with Multilevel Trace-class Neural Networks
Neil K. Chada
Ajay Jasra
K. Law
Sumeetpal S. Singh
BDL
UQCV
83
3
0
24 Mar 2022
Posterior contraction rates for constrained deep Gaussian processes in
  density estimation and classication
Posterior contraction rates for constrained deep Gaussian processes in density estimation and classication
François Bachoc
A. Lagnoux
26
4
0
14 Dec 2021
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
27
4
0
01 Oct 2021
Neural Operator: Learning Maps Between Function Spaces
Neural Operator: Learning Maps Between Function Spaces
Nikola B. Kovachki
Zong-Yi Li
Burigede Liu
Kamyar Azizzadenesheli
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
52
441
0
19 Aug 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian
  Process Perspective
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Hierarchical Non-Stationary Temporal Gaussian Processes With
  $L^1$-Regularization
Hierarchical Non-Stationary Temporal Gaussian Processes With L1L^1L1-Regularization
Zheng Zhao
Rui Gao
Simo Särkkä
20
0
0
20 May 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
35
124
0
14 May 2021
Deep limits and cut-off phenomena for neural networks
Deep limits and cut-off phenomena for neural networks
B. Avelin
A. Karlsson
AI4CE
40
2
0
21 Apr 2021
Deep State-Space Gaussian Processes
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
43
19
0
11 Aug 2020
Blind hierarchical deconvolution
Blind hierarchical deconvolution
Arttu Arjas
L. Roininen
M. Sillanpää
A. Hauptmann
18
4
0
22 Jul 2020
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion
M. Emzir
Sari Lasanen
Z. Purisha
L. Roininen
Simo Särkkä
22
9
0
28 Jun 2020
Likelihood-Free Inference with Deep Gaussian Processes
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
26
10
0
18 Jun 2020
Deep Gaussian Markov Random Fields
Deep Gaussian Markov Random Fields
Per Sidén
Fredrik Lindsten
BDL
28
22
0
18 Feb 2020
Compositional uncertainty in deep Gaussian processes
Compositional uncertainty in deep Gaussian processes
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Markus Kaiser
Erik Bodin
Neill D. F. Campbell
Carl Henrik Ek
UQCV
33
22
0
17 Sep 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
32
14
0
27 May 2019
Interpretable deep Gaussian processes with moments
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
26
19
0
27 May 2019
On the well-posedness of Bayesian inverse problems
On the well-posedness of Bayesian inverse problems
J. Latz
22
48
0
26 Feb 2019
Kernel Flows: from learning kernels from data into the abyss
Kernel Flows: from learning kernels from data into the abyss
H. Owhadi
G. Yoo
18
88
0
13 Aug 2018
Inference in Deep Gaussian Processes using Stochastic Gradient
  Hamiltonian Monte Carlo
Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
Marton Havasi
José Miguel Hernández-Lobato
J. J. Murillo-Fuentes
BDL
19
96
0
14 Jun 2018
Posterior Inference for Sparse Hierarchical Non-stationary Models
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
29
27
0
04 Apr 2018
Dimension-Robust MCMC in Bayesian Inverse Problems
Dimension-Robust MCMC in Bayesian Inverse Problems
Victor Chen
Matthew M. Dunlop
O. Papaspiliopoulos
Andrew M. Stuart
27
36
0
09 Mar 2018
Hyperpriors for Matérn fields with applications in Bayesian inversion
Hyperpriors for Matérn fields with applications in Bayesian inversion
L. Roininen
Mark Girolami
Sari Lasanen
M. Markkanen
8
57
0
09 Dec 2016
1