Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01378
Cited By
v1
v2 (latest)
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
4 December 2017
Samuel E. Otto
C. Rowley
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Linearly-Recurrent Autoencoder Networks for Learning Dynamics"
24 / 124 papers shown
Title
Transformers for Modeling Physical Systems
N. Geneva
N. Zabaras
AI4CE
119
146
0
04 Oct 2020
Analyzing Koopman approaches to physics-informed machine learning for long-term sea-surface temperature forecasting
Julian Rice
Wenwei Xu
Andrew August
50
10
0
15 Sep 2020
Reimagining City Configuration: Automated Urban Planning via Adversarial Learning
Dongjie Wang
Yanjie Fu
Pengyang Wang
B. Huang
Chang-Tien Lu
110
30
0
22 Aug 2020
A Tailored Convolutional Neural Network for Nonlinear Manifold Learning of Computational Physics Data using Unstructured Spatial Discretizations
John Tencer
Kevin Potter
AI4CE
61
13
0
11 Jun 2020
From Fourier to Koopman: Spectral Methods for Long-term Time Series Prediction
Henning Lange
Steven L. Brunton
N. Kutz
AI4TS
89
80
0
01 Apr 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
158
415
0
10 Mar 2020
Sparsity-promoting algorithms for the discovery of informative Koopman invariant subspaces
Shaowu Pan
Nicholas Arnold-Medabalimi
Karthik Duraisamy
78
48
0
25 Feb 2020
Deep reconstruction of strange attractors from time series
W. Gilpin
AI4TS
56
3
0
14 Feb 2020
Deep learning to discover and predict dynamics on an inertial manifold
Alec J. Linot
M. Graham
AI4CE
80
75
0
20 Dec 2019
Parameter-Conditioned Sequential Generative Modeling of Fluid Flows
Jeremy Morton
F. Witherden
Mykel J. Kochenderfer
GAN
MedIm
AI4CE
61
10
0
14 Dec 2019
Deep Learning Models for Global Coordinate Transformations that Linearize PDEs
Craig Gin
Bethany Lusch
Steven L. Brunton
J. Nathan Kutz
83
41
0
07 Nov 2019
Towards Scalable Koopman Operator Learning: Convergence Rates and A Distributed Learning Algorithm
Zhiyuan Liu
Guohui Ding
Lijun Chen
Enoch Yeung
25
3
0
30 Sep 2019
Physics-Informed Probabilistic Learning of Linear Embeddings of Non-linear Dynamics With Guaranteed Stability
Shaowu Pan
Karthik Duraisamy
140
138
0
09 Jun 2019
A Discrete Empirical Interpolation Method for Interpretable Immersion and Embedding of Nonlinear Manifolds
Samuel E. Otto
C. Rowley
20
3
0
18 May 2019
Kernel methods for detecting coherent structures in dynamical data
Stefan Klus
B. Husic
Mattes Mollenhauer
Frank Noé
57
29
0
16 Apr 2019
Deep Variational Koopman Models: Inferring Koopman Observations for Uncertainty-Aware Dynamics Modeling and Control
Jeremy Morton
F. Witherden
Mykel J Kochenderfer
85
47
0
26 Feb 2019
Machine Learning for Molecular Dynamics on Long Timescales
Frank Noé
AI4CE
77
32
0
18 Dec 2018
Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems
F. J. Gonzalez
Maciej Balajewicz
AI4CE
152
140
0
03 Aug 2018
Discovering physical concepts with neural networks
Raban Iten
Tony Metger
H. Wilming
L. D. Rio
R. Renner
PINN
AI4CE
129
391
0
26 Jul 2018
Deep Generative Markov State Models
Hao Wu
Andreas Mardt
Luca Pasquali
Frank Noe
AI4CE
81
60
0
19 May 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
121
1,268
0
27 Dec 2017
Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition
Naoya Takeishi
Yoshinobu Kawahara
Takehisa Yairi
86
374
0
12 Oct 2017
Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems
Enoch Yeung
Soumya Kundu
Nathan Oken Hodas
AI4CE
92
387
0
22 Aug 2017
Variational approach for learning Markov processes from time series data
Hao Wu
Frank Noé
BDL
AI4TS
92
266
0
14 Jul 2017
Previous
1
2
3