Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.01887
Cited By
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
5 December 2017
Yujun Lin
Song Han
Huizi Mao
Yu Wang
W. Dally
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training"
50 / 202 papers shown
Title
Communication-Efficient Wireless Federated Fine-Tuning for Large-Scale AI Models
Bumjun Kim
Wan Choi
26
0
0
01 May 2025
BackSlash: Rate Constrained Optimized Training of Large Language Models
Jun Wu
Jiangtao Wen
Yuxing Han
34
0
0
23 Apr 2025
TAGC: Optimizing Gradient Communication in Distributed Transformer Training
Igor Polyakov
Alexey Dukhanov
Egor Spirin
41
0
0
08 Apr 2025
Towards Optimal Heterogeneous Client Sampling in Multi-Model Federated Learning
Haoran Zhang
Zejun Gong
Zekai Li
Marie Siew
Carlee Joe-Wong
Rachid El-Azouzi
31
0
0
07 Apr 2025
FedSAUC: A Similarity-Aware Update Control for Communication-Efficient Federated Learning in Edge Computing
Ming-Lun Lee
Han-Chang Chou
Yan-AnnChen
FedML
34
6
0
07 Apr 2025
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
43
0
0
11 Mar 2025
Delayed Random Partial Gradient Averaging for Federated Learning
Xinyi Hu
FedML
43
0
0
31 Dec 2024
Sketched Adaptive Federated Deep Learning: A Sharp Convergence Analysis
Zhijie Chen
Qiaobo Li
A. Banerjee
FedML
35
0
0
11 Nov 2024
Trustworthiness of Stochastic Gradient Descent in Distributed Learning
Hongyang Li
Caesar Wu
Mohammed Chadli
Said Mammar
Pascal Bouvry
46
1
0
28 Oct 2024
LDAdam: Adaptive Optimization from Low-Dimensional Gradient Statistics
Thomas Robert
M. Safaryan
Ionut-Vlad Modoranu
Dan Alistarh
ODL
31
2
0
21 Oct 2024
No Need to Talk: Asynchronous Mixture of Language Models
Anastasiia Filippova
Angelos Katharopoulos
David Grangier
Ronan Collobert
MoE
33
0
0
04 Oct 2024
Novel Gradient Sparsification Algorithm via Bayesian Inference
Ali Bereyhi
B. Liang
G. Boudreau
Ali Afana
34
2
0
23 Sep 2024
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Zilinghan Li
Shilan He
Ze Yang
Minseok Ryu
Kibaek Kim
Ravi K. Madduri
FedML
52
5
0
17 Sep 2024
S-STE: Continuous Pruning Function for Efficient 2:4 Sparse Pre-training
Yuezhou Hu
Jun-Jie Zhu
Jianfei Chen
36
0
0
13 Sep 2024
Ordered Momentum for Asynchronous SGD
Chang-Wei Shi
Yi-Rui Yang
Wu-Jun Li
ODL
52
0
0
27 Jul 2024
Asynchronous Byzantine Federated Learning
Bart Cox
Abele Malan
Lydia Y. Chen
Jérémie Decouchant
42
1
0
03 Jun 2024
VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
Roy Miles
Pradyumna Reddy
Ismail Elezi
Jiankang Deng
VLM
32
3
0
28 May 2024
Decentralized Personalized Federated Learning based on a Conditional Sparse-to-Sparser Scheme
Qianyu Long
Qiyuan Wang
Christos Anagnostopoulos
Daning Bi
FedML
26
0
0
24 Apr 2024
Federated Multi-Agent Mapping for Planetary Exploration
Tiberiu-Ioan Szatmari
Abhishek Cauligi
FedML
AI4CE
37
0
0
02 Apr 2024
SignSGD with Federated Voting
Chanho Park
H. Vincent Poor
Namyoon Lee
FedML
38
1
0
25 Mar 2024
Fed-CVLC: Compressing Federated Learning Communications with Variable-Length Codes
Xiaoxin Su
Yipeng Zhou
Laizhong Cui
John C. S. Lui
Jiangchuan Liu
FedML
27
1
0
06 Feb 2024
Correlated Quantization for Faster Nonconvex Distributed Optimization
Andrei Panferov
Yury Demidovich
Ahmad Rammal
Peter Richtárik
MQ
28
4
0
10 Jan 2024
RS-DGC: Exploring Neighborhood Statistics for Dynamic Gradient Compression on Remote Sensing Image Interpretation
Weiying Xie
Zixuan Wang
Jitao Ma
Daixun Li
Yunsong Li
30
0
0
29 Dec 2023
Federated Continual Learning via Knowledge Fusion: A Survey
Xin Yang
Hao Yu
Xin Gao
Hao Wang
Junbo Zhang
Tianrui Li
FedML
30
31
0
27 Dec 2023
Compressed and Sparse Models for Non-Convex Decentralized Learning
Andrew Campbell
Hang Liu
Leah Woldemariam
Anna Scaglione
20
0
0
09 Nov 2023
Convergence of Sign-based Random Reshuffling Algorithms for Nonconvex Optimization
Zhen Qin
Zhishuai Liu
Pan Xu
18
1
0
24 Oct 2023
FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental Regularization
Qianyu Long
Christos Anagnostopoulos
S. P. Parambath
Daning Bi
AI4CE
FedML
11
2
0
13 Sep 2023
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
70
4
0
01 Aug 2023
Revolutionizing Wireless Networks with Federated Learning: A Comprehensive Review
Sajjad Emdadi Mahdimahalleh
AI4CE
28
0
0
01 Aug 2023
Mitigating Cross-client GANs-based Attack in Federated Learning
Hong Huang
Xinyu Lei
Tao Xiang
AAML
45
1
0
25 Jul 2023
Accelerating Distributed ML Training via Selective Synchronization
S. Tyagi
Martin Swany
FedML
24
3
0
16 Jul 2023
FedBIAD: Communication-Efficient and Accuracy-Guaranteed Federated Learning with Bayesian Inference-Based Adaptive Dropout
Jingjing Xue
Min Liu
Sheng Sun
Yuwei Wang
Hui Jiang
Xue Jiang
18
7
0
14 Jul 2023
Exact Optimality of Communication-Privacy-Utility Tradeoffs in Distributed Mean Estimation
Berivan Isik
Wei-Ning Chen
Ayfer Özgür
Tsachy Weissman
Albert No
48
19
0
08 Jun 2023
Get More for Less in Decentralized Learning Systems
Akash Dhasade
Anne-Marie Kermarrec
Rafael Pires
Rishi Sharma
Milos Vujasinovic
Jeffrey Wigger
26
7
0
07 Jun 2023
Theoretically Principled Federated Learning for Balancing Privacy and Utility
Xiaojin Zhang
Wenjie Li
Kai Chen
Shutao Xia
Qian Yang
FedML
17
9
0
24 May 2023
GraVAC: Adaptive Compression for Communication-Efficient Distributed DL Training
S. Tyagi
Martin Swany
25
4
0
20 May 2023
Improving Small Language Models on PubMedQA via Generative Data Augmentation
Zhen Guo
Peiqi Wang
Yanwei Wang
Shangdi Yu
LM&MA
MedIm
18
10
0
12 May 2023
STen: Productive and Efficient Sparsity in PyTorch
Andrei Ivanov
Nikoli Dryden
Tal Ben-Nun
Saleh Ashkboos
Torsten Hoefler
30
4
0
15 Apr 2023
Communication and Energy Efficient Wireless Federated Learning with Intrinsic Privacy
Zhenxiao Zhang
Yuanxiong Guo
Yuguang Fang
Yanmin Gong
28
4
0
15 Apr 2023
RecUP-FL: Reconciling Utility and Privacy in Federated Learning via User-configurable Privacy Defense
Yue-li Cui
Syed Imran Ali Meerza
Zhuohang Li
Luyang Liu
Jiaxin Zhang
Jian-Dong Liu
AAML
FedML
21
4
0
11 Apr 2023
FedBEVT: Federated Learning Bird's Eye View Perception Transformer in Road Traffic Systems
Rui Song
Runsheng Xu
Andreas Festag
Jiaqi Ma
Alois C. Knoll
FedML
28
25
0
04 Apr 2023
Complement Sparsification: Low-Overhead Model Pruning for Federated Learning
Xiaopeng Jiang
Cristian Borcea
FedML
26
15
0
10 Mar 2023
Cloudless-Training: A Framework to Improve Efficiency of Geo-Distributed ML Training
W. Tan
Xiao Shi
Cunchi Lv
Xiaofang Zhao
FedML
20
1
0
09 Mar 2023
Expediting Distributed DNN Training with Device Topology-Aware Graph Deployment
Shiwei Zhang
Xiaodong Yi
Lansong Diao
Chuan Wu
Siyu Wang
W. Lin
GNN
11
5
0
13 Feb 2023
FedPass: Privacy-Preserving Vertical Federated Deep Learning with Adaptive Obfuscation
Hanlin Gu
Jiahuan Luo
Yan Kang
Lixin Fan
Qiang Yang
FedML
34
13
0
30 Jan 2023
SWARM Parallelism: Training Large Models Can Be Surprisingly Communication-Efficient
Max Ryabinin
Tim Dettmers
Michael Diskin
Alexander Borzunov
MoE
22
31
0
27 Jan 2023
Optimus-CC: Efficient Large NLP Model Training with 3D Parallelism Aware Communication Compression
Jaeyong Song
Jinkyu Yim
Jaewon Jung
Hongsun Jang
H. Kim
Youngsok Kim
Jinho Lee
GNN
14
25
0
24 Jan 2023
M22: A Communication-Efficient Algorithm for Federated Learning Inspired by Rate-Distortion
Yangyi Liu
Stefano Rini
Sadaf Salehkalaibar
Jun Chen
FedML
11
4
0
23 Jan 2023
Does compressing activations help model parallel training?
S. Bian
Dacheng Li
Hongyi Wang
Eric P. Xing
Shivaram Venkataraman
19
4
0
06 Jan 2023
Mutual Information Regularization for Vertical Federated Learning
Tianyuan Zou
Yang Liu
Ya-Qin Zhang
AAML
FedML
24
7
0
01 Jan 2023
1
2
3
4
5
Next