Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.02779
Cited By
v1
v2
v3
v4 (latest)
Exploring the Landscape of Spatial Robustness
7 December 2017
Logan Engstrom
Brandon Tran
Dimitris Tsipras
Ludwig Schmidt
Aleksander Madry
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (49★)
Papers citing
"Exploring the Landscape of Spatial Robustness"
50 / 149 papers shown
Title
Model Patching: Closing the Subgroup Performance Gap with Data Augmentation
Karan Goel
Albert Gu
Yixuan Li
Christopher Ré
104
121
0
15 Aug 2020
RGB cameras failures and their effects in autonomous driving applications
Andrea Ceccarelli
Francesco Secci
62
32
0
13 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
113
73
0
07 Aug 2020
On Robustness and Transferability of Convolutional Neural Networks
Josip Djolonga
Jessica Yung
Michael Tschannen
Rob Romijnders
Lucas Beyer
...
D. Moldovan
Sylvain Gelly
N. Houlsby
Xiaohua Zhai
Mario Lucic
OOD
102
156
0
16 Jul 2020
Learning perturbation sets for robust machine learning
Eric Wong
J. Zico Kolter
OOD
76
81
0
16 Jul 2020
Perceptual Adversarial Robustness: Defense Against Unseen Threat Models
Cassidy Laidlaw
Sahil Singla
Soheil Feizi
AAML
OOD
109
189
0
22 Jun 2020
Adversarial Training against Location-Optimized Adversarial Patches
Sukrut Rao
David Stutz
Bernt Schiele
AAML
84
92
0
05 May 2020
Continuous sign language recognition from wearable IMUs using deep capsule networks and game theory
Karush Suri
Rinki Gupta
11
38
0
27 Apr 2020
Towards Deep Learning Models Resistant to Large Perturbations
Amirreza Shaeiri
Rozhin Nobahari
M. Rohban
OOD
AAML
76
12
0
30 Mar 2020
Certified Defenses for Adversarial Patches
Ping Yeh-Chiang
Renkun Ni
Ahmed Abdelkader
Chen Zhu
Christoph Studer
Tom Goldstein
AAML
63
171
0
14 Mar 2020
Certified Defense to Image Transformations via Randomized Smoothing
Marc Fischer
Maximilian Baader
Martin Vechev
AAML
84
67
0
27 Feb 2020
Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization
Sicheng Zhu
Xiao Zhang
David Evans
SSL
OOD
83
27
0
26 Feb 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
124
810
0
26 Feb 2020
Gödel's Sentence Is An Adversarial Example But Unsolvable
Xiaodong Qi
Lansheng Han
AAML
51
0
0
25 Feb 2020
Boosting Adversarial Training with Hypersphere Embedding
Tianyu Pang
Xiao Yang
Yinpeng Dong
Kun Xu
Jun Zhu
Hang Su
AAML
87
156
0
20 Feb 2020
On the Information Bottleneck Problems: Models, Connections, Applications and Information Theoretic Views
Milad Sefidgaran
Iñaki Estella Aguerri
S. Shamai
56
90
0
31 Jan 2020
Evaluating Robustness to Context-Sensitive Feature Perturbations of Different Granularities
Isaac Dunn
Laura Hanu
Hadrien Pouget
Daniel Kroening
T. Melham
AAML
56
2
0
29 Jan 2020
A simple way to make neural networks robust against diverse image corruptions
E. Rusak
Lukas Schott
Roland S. Zimmermann
Julian Bitterwolf
Oliver Bringmann
Matthias Bethge
Wieland Brendel
86
64
0
16 Jan 2020
A Little Fog for a Large Turn
Harshitha Machiraju
V. Balasubramanian
AAML
61
9
0
16 Jan 2020
Advbox: a toolbox to generate adversarial examples that fool neural networks
Dou Goodman
Xin Hao
Yang Wang
Yuesheng Wu
Junfeng Xiong
Huan Zhang
AAML
132
55
0
13 Jan 2020
Deceiving Image-to-Image Translation Networks for Autonomous Driving with Adversarial Perturbations
Lin Wang
Wonjune Cho
Kuk-Jin Yoon
AAML
67
25
0
06 Jan 2020
Generating Semantic Adversarial Examples via Feature Manipulation
Shuo Wang
Surya Nepal
Carsten Rudolph
M. Grobler
Shangyu Chen
Tianle Chen
AAML
78
12
0
06 Jan 2020
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
Keane Lucas
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
S. Shintre
AAML
86
68
0
19 Dec 2019
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
287
6,315
0
10 Dec 2019
Achieving Robustness in the Wild via Adversarial Mixing with Disentangled Representations
Sven Gowal
Chongli Qin
Po-Sen Huang
taylan. cemgil
Krishnamurthy Dvijotham
Timothy A. Mann
Pushmeet Kohli
AAML
OOD
74
57
0
06 Dec 2019
Walking on the Edge: Fast, Low-Distortion Adversarial Examples
Hanwei Zhang
Yannis Avrithis
Teddy Furon
Laurent Amsaleg
AAML
50
46
0
04 Dec 2019
Data Augmentation Using Adversarial Training for Construction-Equipment Classification
Francis Baek
Somin Park
Hyoungkwan Kim
GAN
26
5
0
27 Nov 2019
Playing it Safe: Adversarial Robustness with an Abstain Option
Cassidy Laidlaw
Soheil Feizi
AAML
75
20
0
25 Nov 2019
Identifying Model Weakness with Adversarial Examiner
Michelle Shu
Chenxi Liu
Weichao Qiu
Alan Yuille
AAML
ELM
73
20
0
25 Nov 2019
Band-limited Training and Inference for Convolutional Neural Networks
Adam Dziedzic
John Paparrizos
S. Krishnan
Aaron J. Elmore
Michael Franklin
72
53
0
21 Nov 2019
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
106
13
0
20 Nov 2019
Regularized Deep Networks in Intelligent Transportation Systems: A Taxonomy and a Case Study
Mohammad Mahdi Bejani
M. Ghatee
OOD
23
12
0
08 Nov 2019
Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance
Zhengyu Zhao
Zhuoran Liu
Martha Larson
AAML
108
148
0
06 Nov 2019
Extracting robust and accurate features via a robust information bottleneck
Ankit Pensia
Varun Jog
Po-Ling Loh
AAML
61
20
0
15 Oct 2019
Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks
David Stutz
Matthias Hein
Bernt Schiele
AAML
78
5
0
14 Oct 2019
Man-in-the-Middle Attacks against Machine Learning Classifiers via Malicious Generative Models
Derui Wang
Wang
Chaoran Li
S. Wen
Surya Nepal
Yang Xiang
AAML
34
35
0
14 Oct 2019
Deep Latent Defence
Giulio Zizzo
C. Hankin
S. Maffeis
K. Jones
AAML
40
2
0
09 Oct 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
89
105
0
25 Sep 2019
Are Adversarial Robustness and Common Perturbation Robustness Independent Attributes ?
Alfred Laugros
A. Caplier
Matthieu Ospici
AAML
53
40
0
04 Sep 2019
Robustifying deep networks for image segmentation
Zheng Liu
Jinnian Zhang
Varun Jog
Po-Ling Loh
A. McMillan
AAML
OOD
37
7
0
01 Aug 2019
Metamorphic Testing of a Deep Learning based Forecaster
Anurag Dwarakanath
Manish Ahuja
Sanjay Podder
Silja Vinu
Arijit Naskar
M. Koushik
AI4TS
43
9
0
13 Jul 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
118
492
0
03 Jul 2019
Cloud-based Image Classification Service Is Not Robust To Simple Transformations: A Forgotten Battlefield
Dou Goodman
Tao Wei
AAML
57
6
0
19 Jun 2019
SemanticAdv: Generating Adversarial Examples via Attribute-conditional Image Editing
Haonan Qiu
Chaowei Xiao
Lei Yang
Xinchen Yan
Honglak Lee
Yue Liu
AAML
69
171
0
19 Jun 2019
The Attack Generator: A Systematic Approach Towards Constructing Adversarial Attacks
F. Assion
Peter Schlicht
Florens Greßner
W. Günther
Fabian Hüger
Nico M. Schmidt
Umair Rasheed
AAML
73
14
0
17 Jun 2019
Novelty Detection via Network Saliency in Visual-based Deep Learning
Valerie Chen
Man-Ki Yoon
Zhong Shao
29
3
0
09 Jun 2019
Making targeted black-box evasion attacks effective and efficient
Mika Juuti
B. Atli
Nadarajah Asokan
AAML
MIACV
MLAU
43
8
0
08 Jun 2019
MNIST-C: A Robustness Benchmark for Computer Vision
Norman Mu
Justin Gilmer
73
213
0
05 Jun 2019
Do Image Classifiers Generalize Across Time?
Vaishaal Shankar
Achal Dave
Rebecca Roelofs
Deva Ramanan
Benjamin Recht
Ludwig Schmidt
140
83
0
05 Jun 2019
Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward
A. Qayyum
Muhammad Usama
Junaid Qadir
Ala I. Al-Fuqaha
AAML
86
191
0
29 May 2019
Previous
1
2
3
Next