Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.02779
Cited By
v1
v2
v3
v4 (latest)
Exploring the Landscape of Spatial Robustness
7 December 2017
Logan Engstrom
Brandon Tran
Dimitris Tsipras
Ludwig Schmidt
Aleksander Madry
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Github (49★)
Papers citing
"Exploring the Landscape of Spatial Robustness"
49 / 149 papers shown
Title
Functional Adversarial Attacks
Cassidy Laidlaw
Soheil Feizi
AAML
100
185
0
29 May 2019
Provable robustness against all adversarial
l
p
l_p
l
p
-perturbations for
p
≥
1
p\geq 1
p
≥
1
Francesco Croce
Matthias Hein
OOD
68
75
0
27 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
99
1,845
0
06 May 2019
Transfer of Adversarial Robustness Between Perturbation Types
Daniel Kang
Yi Sun
Tom B. Brown
Dan Hendrycks
Jacob Steinhardt
AAML
58
49
0
03 May 2019
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
93
380
0
30 Apr 2019
Making Convolutional Networks Shift-Invariant Again
Richard Y. Zhang
OOD
101
799
0
25 Apr 2019
Using Videos to Evaluate Image Model Robustness
Keren Gu
Brandon Yang
Jiquan Ngiam
Quoc V. Le
Jonathon Shlens
AAML
75
44
0
22 Apr 2019
Semantic Adversarial Attacks: Parametric Transformations That Fool Deep Classifiers
Ameya Joshi
Amitangshu Mukherjee
Soumik Sarkar
Chinmay Hegde
AAML
90
100
0
17 Apr 2019
Adversarial camera stickers: A physical camera-based attack on deep learning systems
Juncheng Billy Li
Frank R. Schmidt
J. Zico Kolter
AAML
79
168
0
21 Mar 2019
On the Robustness of Deep K-Nearest Neighbors
Chawin Sitawarin
David Wagner
AAML
OOD
140
58
0
20 Mar 2019
Single-frame Regularization for Temporally Stable CNNs
Gabriel Eilertsen
Rafał K. Mantiuk
Jonas Unger
86
43
0
27 Feb 2019
Quantifying Perceptual Distortion of Adversarial Examples
Matt Jordan
N. Manoj
Surbhi Goel
A. Dimakis
68
39
0
21 Feb 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
95
211
0
21 Feb 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
123
905
0
18 Feb 2019
Do ImageNet Classifiers Generalize to ImageNet?
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
OOD
SSeg
VLM
135
1,729
0
13 Feb 2019
Daedalus: Breaking Non-Maximum Suppression in Object Detection via Adversarial Examples
Derui Wang
Chaoran Li
S. Wen
Qing-Long Han
Surya Nepal
Xiangyu Zhang
Yang Xiang
AAML
73
40
0
06 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
172
2,564
0
24 Jan 2019
A Survey of Safety and Trustworthiness of Deep Neural Networks: Verification, Testing, Adversarial Attack and Defence, and Interpretability
Xiaowei Huang
Daniel Kroening
Wenjie Ruan
Marta Kwiatkowska
Youcheng Sun
Emese Thamo
Min Wu
Xinping Yi
AAML
123
51
0
18 Dec 2018
Rigorous Agent Evaluation: An Adversarial Approach to Uncover Catastrophic Failures
Junhui Yin
Jiayan Qiu
Csaba Szepesvári
Siqing Zhang
Avraham Ruderman
Jiyang Xie
Krishnamurthy Dvijotham
Zhanyu Ma
N. Heess
Pushmeet Kohli
AAML
99
81
0
04 Dec 2018
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
274
285
0
03 Dec 2018
Attacks on State-of-the-Art Face Recognition using Attentional Adversarial Attack Generative Network
Q. Song
Yingqi Wu
Lu Yang
AAML
CVBM
GAN
118
98
0
29 Nov 2018
Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects
Michael A. Alcorn
Melvin Johnson
Zhitao Gong
Chengfei Wang
Long Mai
Naveen Ari
Stella Laurenzo
105
298
0
28 Nov 2018
Bilateral Adversarial Training: Towards Fast Training of More Robust Models Against Adversarial Attacks
Jianyu Wang
Haichao Zhang
OOD
AAML
87
119
0
26 Nov 2018
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
K. Makarychev
Pascal Dupré
Yury Makarychev
Giancarlo Pellegrino
Dan Boneh
AAML
104
64
0
08 Nov 2018
Rademacher Complexity for Adversarially Robust Generalization
Dong Yin
Kannan Ramchandran
Peter L. Bartlett
AAML
103
261
0
29 Oct 2018
Adversarial Examples - A Complete Characterisation of the Phenomenon
A. Serban
E. Poll
Joost Visser
SILM
AAML
100
49
0
02 Oct 2018
A Kernel Perspective for Regularizing Deep Neural Networks
A. Bietti
Grégoire Mialon
Dexiong Chen
Julien Mairal
82
15
0
30 Sep 2018
Predicting the Generalization Gap in Deep Networks with Margin Distributions
Yiding Jiang
Dilip Krishnan
H. Mobahi
Samy Bengio
UQCV
95
199
0
28 Sep 2018
Unrestricted Adversarial Examples
Tom B. Brown
Nicholas Carlini
Chiyuan Zhang
Catherine Olsson
Paul Christiano
Ian Goodfellow
AAML
78
103
0
22 Sep 2018
Are You Tampering With My Data?
Michele Alberti
Vinaychandran Pondenkandath
Marcel Würsch
Manuel Bouillon
Mathias Seuret
Rolf Ingold
Marcus Liwicki
AAML
104
19
0
21 Aug 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
105
229
0
18 Jul 2018
Adaptive Adversarial Attack on Scene Text Recognition
Xiaoyong Yuan
Pan He
Xiaolin Li
Dapeng Oliver Wu
AAML
73
23
0
09 Jul 2018
Adversarial Robustness Toolbox v1.0.0
Maria-Irina Nicolae
M. Sinn
Minh-Ngoc Tran
Beat Buesser
Ambrish Rawat
...
Nathalie Baracaldo
Bryant Chen
Heiko Ludwig
Ian Molloy
Ben Edwards
AAML
VLM
91
462
0
03 Jul 2018
Why do deep convolutional networks generalize so poorly to small image transformations?
Aharon Azulay
Yair Weiss
101
563
0
30 May 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
114
1,786
0
30 May 2018
Training verified learners with learned verifiers
Krishnamurthy Dvijotham
Sven Gowal
Robert Stanforth
Relja Arandjelović
Brendan O'Donoghue
J. Uesato
Pushmeet Kohli
OOD
91
170
0
25 May 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
174
797
0
30 Apr 2018
Formal Security Analysis of Neural Networks using Symbolic Intervals
Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
AAML
84
478
0
28 Apr 2018
ADef: an Iterative Algorithm to Construct Adversarial Deformations
Rima Alaifari
Giovanni S. Alberti
Tandri Gauksson
AAML
87
97
0
20 Apr 2018
Semantic Adversarial Examples
Hossein Hosseini
Radha Poovendran
GAN
AAML
108
199
0
16 Mar 2018
Defending against Adversarial Attack towards Deep Neural Networks via Collaborative Multi-task Training
Derui Wang
Chaoran Li
S. Wen
Surya Nepal
Yang Xiang
AAML
63
30
0
14 Mar 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
156
508
0
13 Mar 2018
On the Suitability of
L
p
L_p
L
p
-norms for Creating and Preventing Adversarial Examples
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
AAML
144
138
0
27 Feb 2018
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
84
195
0
31 Dec 2017
The Robust Manifold Defense: Adversarial Training using Generative Models
A. Jalal
Andrew Ilyas
C. Daskalakis
A. Dimakis
AAML
107
174
0
26 Dec 2017
Adversarial Attacks Beyond the Image Space
Fangyin Wei
Chenxi Liu
Yu-Siang Wang
Weichao Qiu
Lingxi Xie
Yu-Wing Tai
Chi-Keung Tang
Alan Yuille
AAML
126
149
0
20 Nov 2017
Provable defenses against adversarial examples via the convex outer adversarial polytope
Eric Wong
J. Zico Kolter
AAML
156
1,505
0
02 Nov 2017
One pixel attack for fooling deep neural networks
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
188
2,328
0
24 Oct 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
212
2,734
0
19 May 2017
Previous
1
2
3