Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1712.03950
Cited By
Saving Gradient and Negative Curvature Computations: Finding Local Minima More Efficiently
11 December 2017
Yaodong Yu
Difan Zou
Quanquan Gu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Saving Gradient and Negative Curvature Computations: Finding Local Minima More Efficiently"
6 / 6 papers shown
Title
Stochastic Recursive Variance-Reduced Cubic Regularization Methods
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Dongruo Zhou
Quanquan Gu
268
28
0
31 Jan 2019
Finding Local Minima via Stochastic Nested Variance Reduction
Dongruo Zhou
Pan Xu
Quanquan Gu
186
24
0
22 Jun 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
223
158
0
20 Jun 2018
On the Sublinear Convergence of Randomly Perturbed Alternating Gradient Descent to Second Order Stationary Solutions
Songtao Lu
Mingyi Hong
Zhengdao Wang
138
4
0
28 Feb 2018
Stochastic Variance-Reduced Cubic Regularized Newton Method
Dongruo Zhou
Pan Xu
Quanquan Gu
ODL
165
46
0
13 Feb 2018
Third-order Smoothness Helps: Even Faster Stochastic Optimization Algorithms for Finding Local Minima
Yaodong Yu
Pan Xu
Quanquan Gu
142
3
0
18 Dec 2017
1