Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.04912
Cited By
v1
v2
v3
v4 (latest)
Quasi-Oracle Estimation of Heterogeneous Treatment Effects
13 December 2017
Xinkun Nie
Stefan Wager
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Quasi-Oracle Estimation of Heterogeneous Treatment Effects"
25 / 275 papers shown
Title
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson
Uri Shalit
Nathan Kallus
David Sontag
CML
OOD
128
100
0
21 Jan 2020
A Loss-Function for Causal Machine-Learning
I-Sheng Yang
CML
OOD
16
1
0
02 Jan 2020
Localized Debiased Machine Learning: Efficient Inference on Quantile Treatment Effects and Beyond
Nathan Kallus
Xiaojie Mao
Masatoshi Uehara
64
27
0
30 Dec 2019
Estimation and Validation of Ratio-based Conditional Average Treatment Effects Using Observational Data
Steve Yadlowsky
Fabio Pellegrini
F. Lionetto
S. Braune
L. Tian
CML
16
16
0
15 Dec 2019
Group Average Treatment Effects for Observational Studies
D. Jacob
CML
82
20
0
07 Nov 2019
Targeted Estimation of Heterogeneous Treatment Effect in Observational Survival Analysis
Jie Zhu
B. Gallego
CML
91
29
0
20 Oct 2019
Estimation of Bounds on Potential Outcomes For Decision Making
Maggie Makar
Fredrik D. Johansson
John Guttag
David Sontag
27
1
0
10 Oct 2019
Affordable Uplift: Supervised Randomization in Controlled Experiments
Johannes Haupt
D. Jacob
R. M. Gubela
Stefan Lessmann
92
5
0
01 Oct 2019
Uncovering Sociological Effect Heterogeneity using Machine Learning
J. Brand
Jiahui Xu
Bernard Koch
Pablo Geraldo
CML
18
6
0
18 Sep 2019
Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models
Yuta Saito
Shota Yasui
OOD
CML
40
8
0
11 Sep 2019
Uplift Modeling for Multiple Treatments with Cost Optimization
Zhenyu Zhao
Totte Harinen
40
49
0
14 Aug 2019
Covariate-Powered Empirical Bayes Estimation
Nikolaos Ignatiadis
Stefan Wager
43
20
0
04 Jun 2019
Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments
Vasilis Syrgkanis
Victor Lei
Miruna Oprescu
Maggie Hei
Keith Battocchi
Greg Lewis
CML
50
73
0
24 May 2019
Learning When-to-Treat Policies
Xinkun Nie
Emma Brunskill
Stefan Wager
CML
OffRL
82
92
0
23 May 2019
Experimental Evaluation of Individualized Treatment Rules
Kosuke Imai
Michael Lingzhi Li
65
39
0
14 May 2019
Inferring Heterogeneous Causal Effects in Presence of Spatial Confounding
Muhammad Osama
Dave Zachariah
Thomas B. Schon
33
8
0
28 Jan 2019
Orthogonal Statistical Learning
Dylan J. Foster
Vasilis Syrgkanis
159
174
0
25 Jan 2019
Modified Causal Forests for Estimating Heterogeneous Causal Effects
M. Lechner
CML
40
49
0
22 Dec 2018
Local Linear Forests
R. Friedberg
J. Tibshirani
Susan Athey
Stefan Wager
157
92
0
30 Jul 2018
Regularized Orthogonal Machine Learning for Nonlinear Semiparametric Models
Denis Nekipelov
Vira Semenova
Vasilis Syrgkanis
91
20
0
13 Jun 2018
Causal effects based on distributional distances
Kwangho Kim
Jisu Kim
Edward H. Kennedy
CML
44
19
0
08 Jun 2018
De-Biased Machine Learning of Global and Local Parameters Using Regularized Riesz Representers
Victor Chernozhukov
Whitney Newey
Rahul Singh
105
93
0
23 Feb 2018
Estimation and Inference on Heterogeneous Treatment Effects in High-Dimensional Dynamic Panels under Weak Dependence
Vira Semenova
Matt Goldman
Victor Chernozhukov
Matt Taddy
CML
66
13
0
28 Dec 2017
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
283
288
0
09 Jul 2017
Selective inference for effect modification via the lasso
Qingyuan Zhao
Dylan S. Small
Ashkan Ertefaie
CML
133
50
0
22 May 2017
Previous
1
2
3
4
5
6