Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.04912
Cited By
v1
v2
v3
v4 (latest)
Quasi-Oracle Estimation of Heterogeneous Treatment Effects
13 December 2017
Xinkun Nie
Stefan Wager
CML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Quasi-Oracle Estimation of Heterogeneous Treatment Effects"
50 / 275 papers shown
Title
Interpretable Personalized Experimentation
Han Wu
S. Tan
Weiwei Li
Mia Garrard
Adam Obeng
Drew Dimmery
Shaun Singh
Hanson Wang
Daniel R. Jiang
E. Bakshy
65
6
0
05 Nov 2021
Heterogeneous Effects of Software Patches in a Multiplayer Online Battle Arena Game
Yuzi He
Christopher Tran
Julie Jiang
Keith Burghardt
Emilio Ferrara
Elena Zheleva
Kristina Lerman
45
10
0
27 Oct 2021
Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance
Justin Lim
Christina X. Ji
Michael Oberst
S. Blecker
Leora I. Horwitz
David Sontag
CML
50
5
0
27 Oct 2021
Reliable and Trustworthy Machine Learning for Health Using Dataset Shift Detection
Chunjong Park
Anas Awadalla
Tadayoshi Kohno
Shwetak N. Patel
OOD
65
30
0
26 Oct 2021
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data
Alicia Curth
Changhee Lee
M. Schaar
CML
77
30
0
26 Oct 2021
Heterogeneous Treatment Effect Estimation using machine learning for Healthcare application: tutorial and benchmark
Yaobin Ling
Pulakesh Upadhyaya
Luyao Chen
Xiaoqian Jiang
Yejin Kim
CML
167
21
0
27 Sep 2021
Safe Policy Learning through Extrapolation: Application to Pre-trial Risk Assessment
Eli Ben-Michael
D. J. Greiner
Kosuke Imai
Zhichao Jiang
OffRL
229
22
0
22 Sep 2021
DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions
Amit Sharma
Vasilis Syrgkanis
Cheng Zhang
Emre Kıcıman
78
26
0
27 Aug 2021
Identifiable Energy-based Representations: An Application to Estimating Heterogeneous Causal Effects
Yao Zhang
Jeroen Berrevoets
M. Schaar
CML
84
6
0
06 Aug 2021
Doing Great at Estimating CATE? On the Neglected Assumptions in Benchmark Comparisons of Treatment Effect Estimators
Alicia Curth
M. Schaar
CML
49
7
0
28 Jul 2021
CausalNLP: A Practical Toolkit for Causal Inference with Text
Arun S. Maiya
CML
44
3
0
15 Jun 2021
Machine Learning for Variance Reduction in Online Experiments
Yongyi Guo
Dominic Coey
Mikael Konutgan
Wenting Li
Ch. P. Schoener
Matt Goldman
59
35
0
14 Jun 2021
On Inductive Biases for Heterogeneous Treatment Effect Estimation
Alicia Curth
M. Schaar
CML
193
84
0
07 Jun 2021
Causal Effect Inference for Structured Treatments
Jean Kaddour
Yuchen Zhu
Qi Liu
Matt J. Kusner
Ricardo M. A. Silva
CML
262
51
0
03 Jun 2021
Adaptive Multi-Source Causal Inference
Thanh Vinh Vo
Pengfei Wei
T. Hoang
Tze-Yun Leong
92
1
0
31 May 2021
Federated Estimation of Causal Effects from Observational Data
Thanh Vinh Vo
T. Hoang
Young Lee
Tze-Yun Leong
FedML
CML
70
13
0
31 May 2021
A Twin Neural Model for Uplift
Mouloud Belbahri
Olivier Gandouet
A. Murua
V. Nia
CML
13
1
0
11 May 2021
Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference
AmirEmad Ghassami
Andrew Ying
I. Shpitser
E. T. Tchetgen
90
44
0
07 Apr 2021
A Tree-based Model Averaging Approach for Personalized Treatment Effect Estimation from Heterogeneous Data Sources
Xiaoqing Ellen Tan
Chung Chang
Ling Zhou
Lu Tang
CML
73
18
0
10 Mar 2021
Median Optimal Treatment Regimes
Liu Leqi
Edward H. Kennedy
102
8
0
02 Mar 2021
Kernel Ridge Riesz Representers: Generalization, Mis-specification, and the Counterfactual Effective Dimension
Rahul Singh
CML
91
8
0
22 Feb 2021
Shrinkage Bayesian Causal Forests for Heterogeneous Treatment Effects Estimation
A. Caron
G. Baio
I. Manolopoulou
CML
84
16
0
12 Feb 2021
Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms
Alicia Curth
M. Schaar
CML
181
149
0
26 Jan 2021
Estimating Average Treatment Effects via Orthogonal Regularization
Tobias Hatt
Stefan Feuerriegel
CML
239
36
0
21 Jan 2021
Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments
Rahul Singh
CML
98
41
0
18 Dec 2020
Treatment Targeting by AUUC Maximization with Generalization Guarantees
Artem Betlei
Eustache Diemert
Massih-Reza Amini
CML
65
5
0
17 Dec 2020
Rejoinder: New Objectives for Policy Learning
Nathan Kallus
74
1
0
05 Dec 2020
Deep Learning for Individual Heterogeneity
M. Farrell
Tengyuan Liang
S. Misra
BDL
74
17
0
28 Oct 2020
Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves
Rahul Singh
Liyuan Xu
Arthur Gretton
OffRL
144
31
0
10 Oct 2020
Causal Rule Ensemble: Interpretable Discovery and Inference of Heterogeneous Treatment Effects
Falco J. Bargagli-Stoffi
Riccardo Cadei
Kwonsang Lee
Francesca Dominici
CML
58
16
0
18 Sep 2020
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
A. Caron
G. Baio
I. Manolopoulou
CML
109
56
0
14 Sep 2020
Stable discovery of interpretable subgroups via calibration in causal studies
Raaz Dwivedi
Yan Shuo Tan
Briton Park
Mian Wei
Kevin Horgan
D. Madigan
Bin Yu
CML
54
30
0
23 Aug 2020
Estimating Structural Target Functions using Machine Learning and Influence Functions
Alicia Curth
Ahmed Alaa
M. Schaar
CML
TDI
82
3
0
14 Aug 2020
A unified survey of treatment effect heterogeneity modeling and uplift modeling
Weijia Zhang
Jiuyong Li
Lin Liu
CML
97
60
0
14 Jul 2020
Design and Evaluation of Personalized Free Trials
Hema Yoganarasimhan
E. Barzegary
Abhishek Pani
45
12
0
24 Jun 2020
Assumption-lean inference for generalised linear model parameters
S. Vansteelandt
O. Dukes
CML
150
54
0
15 Jun 2020
Conformal Inference of Counterfactuals and Individual Treatment Effects
Lihua Lei
Emmanuel J. Candès
CML
174
195
0
11 Jun 2020
Wasserstein Random Forests and Applications in Heterogeneous Treatment Effects
Qiming Du
Gérard Biau
Franccois Petit
R. Porcher
CML
BDL
68
6
0
08 Jun 2020
Learning Joint Nonlinear Effects from Single-variable Interventions in the Presence of Hidden Confounders
Sorawit Saengkyongam
Ricardo M. A. Silva
CML
33
10
0
23 May 2020
Feature Selection Methods for Uplift Modeling and Heterogeneous Treatment Effect
Zhenyu Zhao
Yumin Zhang
Totte Harinen
Mike Yung
CML
16
2
0
05 May 2020
Towards optimal doubly robust estimation of heterogeneous causal effects
Edward H. Kennedy
CML
196
328
0
29 Apr 2020
A Comparison of Methods for Treatment Assignment with an Application to Playlist Generation
Carlos Fernández-Loría
F. Provost
J. Anderton
Benjamin Carterette
Praveen Chandar
CML
74
19
0
24 Apr 2020
Learning Continuous Treatment Policy and Bipartite Embeddings for Matching with Heterogeneous Causal Effects
Will Y. Zou
S. Shyam
Michael Mui
Mingshi Wang
Jan Pedersen
Zoubin Ghahramani
CML
53
2
0
21 Apr 2020
Heterogeneous Causal Learning for Effectiveness Optimization in User Marketing
Will Y. Zou
Shuyang Du
James Lee
Jan Pedersen
CML
26
7
0
21 Apr 2020
Adversarial Validation Approach to Concept Drift Problem in User Targeting Automation Systems at Uber
Jing Pan
Vincent Pham
Mohan Dorairaj
Huigang Chen
Jeong-Yoon Lee
AAML
8
7
0
07 Apr 2020
CausalML: Python Package for Causal Machine Learning
Huigang Chen
Totte Harinen
Jeong-Yoon Lee
Mike Yung
Zhenyu Zhao
CML
71
114
0
25 Feb 2020
Double/Debiased Machine Learning for Dynamic Treatment Effects via g-Estimation
Greg Lewis
Vasilis Syrgkanis
CML
76
35
0
17 Feb 2020
Minimax Optimal Nonparametric Estimation of Heterogeneous Treatment Effects
Zijun Gao
Yanjun Han
CML
87
16
0
15 Feb 2020
A Survey on Causal Inference
Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
CML
123
516
0
05 Feb 2020
Estimating heterogeneous treatment effects with right-censored data via causal survival forests
Yifan Cui
Michael R. Kosorok
Erik Sverdrup
Stefan Wager
Ruoqing Zhu
CML
74
75
0
27 Jan 2020
Previous
1
2
3
4
5
6
Next