ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.07262
  4. Cited By
FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation

FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation

19 December 2017
Yaoqing Yang
Chen Feng
Yiru Shen
Dong Tian
    3DPC
ArXivPDFHTML

Papers citing "FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation"

17 / 17 papers shown
Title
Multi-class point cloud completion networks for 3D cardiac anatomy
  reconstruction from cine magnetic resonance images
Multi-class point cloud completion networks for 3D cardiac anatomy reconstruction from cine magnetic resonance images
M. Beetz
Abhirup Banerjee
Julius Ossenberg-Engels
Vicente Grau
3DV
22
15
0
17 Jul 2023
Point-Cloud Completion with Pretrained Text-to-image Diffusion Models
Point-Cloud Completion with Pretrained Text-to-image Diffusion Models
Yoni Kasten
Ohad Rahamim
Gal Chechik
30
24
0
18 Jun 2023
Free-form 3D Scene Inpainting with Dual-stream GAN
Free-form 3D Scene Inpainting with Dual-stream GAN
Ru-Fen Jheng
Tsung-Han Wu
Jia-Fong Yeh
Winston H. Hsu
15
6
0
16 Dec 2022
Joint stereo 3D object detection and implicit surface reconstruction
Joint stereo 3D object detection and implicit surface reconstruction
Shichao Li
Xijie Huang
Zechun Liu
Kwang-Ting Cheng
3DV
19
3
0
25 Nov 2021
Online Adaptation for Implicit Object Tracking and Shape Reconstruction
  in the Wild
Online Adaptation for Implicit Object Tracking and Shape Reconstruction in the Wild
Jianglong Ye
Yuntao Chen
Naiyan Wang
Xiaolong Wang
3DPC
51
9
0
24 Nov 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A
  Systematic Survey of Surveys on Methods and Concepts
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
23
184
0
15 May 2021
PvDeConv: Point-Voxel Deconvolution for Autoencoding CAD Construction in
  3D
PvDeConv: Point-Voxel Deconvolution for Autoencoding CAD Construction in 3D
K. Cherenkova
Djamila Aouada
Gleb Gusev
3DPC
52
16
0
12 Jan 2021
DeepTracking-Net: 3D Tracking with Unsupervised Learning of Continuous
  Flow
DeepTracking-Net: 3D Tracking with Unsupervised Learning of Continuous Flow
Shuaihang Yuan
Xiang Li
Yi Fang
3DPC
17
1
0
24 Jun 2020
Deep Local Shapes: Learning Local SDF Priors for Detailed 3D
  Reconstruction
Deep Local Shapes: Learning Local SDF Priors for Detailed 3D Reconstruction
Rohan Chabra
J. E. Lenssen
Eddy Ilg
Tanner Schmidt
Julian Straub
S. Lovegrove
Richard A. Newcombe
27
461
0
24 Mar 2020
Triangle-Net: Towards Robustness in Point Cloud Learning
Triangle-Net: Towards Robustness in Point Cloud Learning
Chenxi Xiao
J. Wachs
3DH
3DPC
29
34
0
27 Feb 2020
3D Point Cloud Denoising via Deep Neural Network based Local Surface
  Estimation
3D Point Cloud Denoising via Deep Neural Network based Local Surface Estimation
Chaojing Duan
Siheng Chen
J. Kovacevic
3DPC
16
62
0
09 Apr 2019
DeepSDF: Learning Continuous Signed Distance Functions for Shape
  Representation
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation
Jeong Joon Park
Peter R. Florence
Julian Straub
Richard A. Newcombe
S. Lovegrove
3DV
21
3,610
0
16 Jan 2019
Unsupervised Learning of Shape and Pose with Differentiable Point Clouds
Unsupervised Learning of Shape and Pose with Differentiable Point Clouds
Eldar Insafutdinov
Alexey Dosovitskiy
3DPC
25
244
0
22 Oct 2018
Energy Flow Networks: Deep Sets for Particle Jets
Energy Flow Networks: Deep Sets for Particle Jets
Patrick T. Komiske
E. Metodiev
Jesse Thaler
PINN
3DPC
21
251
0
11 Oct 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
247
3,236
0
24 Nov 2016
Learning a Probabilistic Latent Space of Object Shapes via 3D
  Generative-Adversarial Modeling
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
Jiajun Wu
Chengkai Zhang
Tianfan Xue
Bill Freeman
J. Tenenbaum
GAN
171
1,940
0
24 Oct 2016
1