ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.07449
  4. Cited By
In silico generation of novel, drug-like chemical matter using the LSTM
  neural network
v1v2 (latest)

In silico generation of novel, drug-like chemical matter using the LSTM neural network

20 December 2017
P. Ertl
Richard A. Lewis
E. Martin
V. Polyakov
ArXiv (abs)PDFHTML

Papers citing "In silico generation of novel, drug-like chemical matter using the LSTM neural network"

19 / 19 papers shown
Title
SOLD: SELFIES-based Objective-driven Latent Diffusion
SOLD: SELFIES-based Objective-driven Latent Diffusion
Elbert Ho
DiffM
95
0
0
03 Sep 2025
De Novo Drug Design with Joint Transformers
De Novo Drug Design with Joint Transformers
Adam Izdebski
Ewelina Węglarz-Tomczak
Ewa Szczurek
Jakub M. Tomczak
ViT
328
3
0
03 Oct 2023
Deep Learning Methods for Small Molecule Drug Discovery: A Survey
Deep Learning Methods for Small Molecule Drug Discovery: A SurveyIEEE Transactions on Artificial Intelligence (IEEE TAI), 2023
Wenhao Hu
Yingying Liu
Xuanyu Chen
Wenhao Chai
Hangyue Chen
Hongwei Wang
Gaoang Wang
256
17
0
01 Mar 2023
Multi-view deep learning based molecule design and structural
  optimization accelerates the SARS-CoV-2 inhibitor discovery
Multi-view deep learning based molecule design and structural optimization accelerates the SARS-CoV-2 inhibitor discovery
Chao Pang
Yu Wang
Yi Jiang
Ruheng Wang
R. Su
Leyi Wei
124
2
0
03 Dec 2022
Investigation of chemical structure recognition by encoder-decoder
  models in learning progress
Investigation of chemical structure recognition by encoder-decoder models in learning progressJournal of Cheminformatics (J. Cheminform.), 2022
Katsuhisa Morita
T. Mizuno
Hiroyuki Kusuhara
216
10
0
24 Oct 2022
Curiosity in exploring chemical space: Intrinsic rewards for deep
  molecular reinforcement learning
Curiosity in exploring chemical space: Intrinsic rewards for deep molecular reinforcement learning
Luca Thiede
Mario Krenn
AkshatKumar Nigam
Alán Aspuru-Guzik
196
33
0
17 Dec 2020
Controlled Molecule Generator for Optimizing Multiple Chemical
  Properties
Controlled Molecule Generator for Optimizing Multiple Chemical PropertiesACM Conference on Health, Inference, and Learning (CHIL), 2020
Bonggun Shin
Sungsoo Park
Jinyeong Bak
Joyce C. Ho
131
16
0
26 Oct 2020
Exploring Chemical Space using Natural Language Processing Methodologies
  for Drug Discovery
Exploring Chemical Space using Natural Language Processing Methodologies for Drug DiscoveryDrug Discovery Today (Drug Discov Today), 2020
Hakime Öztürk
Arzucan Özgür
P. Schwaller
Teodoro Laino
Elif Özkirimli
207
131
0
10 Feb 2020
Deep Generative Model for Sparse Graphs using Text-Based Learning with
  Augmentation in Generative Examination Networks
Deep Generative Model for Sparse Graphs using Text-Based Learning with Augmentation in Generative Examination Networks
R. V. Deursen
Guillaume Godin
97
1
0
24 Sep 2019
GEN: Highly Efficient SMILES Explorer Using Autodidactic Generative
  Examination Networks
GEN: Highly Efficient SMILES Explorer Using Autodidactic Generative Examination NetworksJournal of Cheminformatics (J Cheminform), 2019
R. V. Deursen
P. Ertl
Igor V. Tetko
Guillaume Godin
93
36
0
10 Sep 2019
Generative Models for Automatic Chemical Design
Generative Models for Automatic Chemical Design
Daniel Schwalbe-Koda
Rafael Gómez-Bombarelli
MedImAI4CE
182
87
0
02 Jul 2019
Deep learning for molecular design - a review of the state of the art
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE3DV
227
338
0
11 Mar 2019
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular DesignJournal of Chemical Information and Modeling (JCIM), 2018
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
341
807
0
22 Nov 2018
Generating equilibrium molecules with deep neural networks
Generating equilibrium molecules with deep neural networks
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
BDL
144
38
0
26 Oct 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
665
960
0
07 Jun 2018
Accelerating Prototype-Based Drug Discovery using Conditional Diversity
  Networks
Accelerating Prototype-Based Drug Discovery using Conditional Diversity Networks
Shahar Harel
Kira Radinsky
127
23
0
08 Apr 2018
Development and evaluation of a deep learning model for protein-ligand
  binding affinity prediction
Development and evaluation of a deep learning model for protein-ligand binding affinity prediction
Marta M. Stepniewska-Dziubinska
P. Zielenkiewicz
P. Siedlecki
152
481
0
19 Dec 2017
Constrained Bayesian Optimization for Automatic Chemical Design
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
460
77
0
16 Sep 2017
Objective-Reinforced Generative Adversarial Networks (ORGAN) for
  Sequence Generation Models
Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models
G. L. Guimaraes
Benjamín Sánchez-Lengeling
Carlos Outeiral
Pedro Luis Cunha Farias
Alán Aspuru-Guzik
GAN
241
556
0
30 May 2017
1