ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.08197
  4. Cited By
Fair Forests: Regularized Tree Induction to Minimize Model Bias

Fair Forests: Regularized Tree Induction to Minimize Model Bias

21 December 2017
Edward Raff
Jared Sylvester
S. Mills
    FaML
ArXiv (abs)PDFHTML

Papers citing "Fair Forests: Regularized Tree Induction to Minimize Model Bias"

23 / 23 papers shown
Title
FairUDT: Fairness-aware Uplift Decision Trees
FairUDT: Fairness-aware Uplift Decision Trees
Anam Zahid
Abdur Rehman Ali
Shaina Raza
Rai Shahnawaz
F. Kamiran
Asim Karim
126
0
0
03 Feb 2025
Enhancing Group Fairness in Online Settings Using Oblique Decision
  Forests
Enhancing Group Fairness in Online Settings Using Oblique Decision Forests
Somnath Basu Roy Chowdhury
Nicholas Monath
Ahmad Beirami
Rahul Kidambi
Kumar Avinava Dubey
Amr Ahmed
Snigdha Chaturvedi
66
2
0
17 Oct 2023
Mean Parity Fair Regression in RKHS
Mean Parity Fair Regression in RKHS
Shaokui Wei
Jiayin Liu
Bing Li
H. Zha
56
3
0
21 Feb 2023
Subgroup Robustness Grows On Trees: An Empirical Baseline Investigation
Subgroup Robustness Grows On Trees: An Empirical Baseline Investigation
Josh Gardner
Zoran Popovic
Ludwig Schmidt
OOD
103
23
0
23 Nov 2022
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Bias Mitigation for Machine Learning Classifiers: A Comprehensive Survey
Max Hort
Zhenpeng Chen
Jie M. Zhang
Mark Harman
Federica Sarro
FaMLAI4CE
109
177
0
14 Jul 2022
Selective Regression Under Fairness Criteria
Selective Regression Under Fairness Criteria
Abhin Shah
Yuheng Bu
Joshua K. Lee
Subhro Das
Yikang Shen
P. Sattigeri
G. Wornell
114
28
0
28 Oct 2021
FairCanary: Rapid Continuous Explainable Fairness
FairCanary: Rapid Continuous Explainable Fairness
Avijit Ghosh
Aalok Shanbhag
Christo Wilson
107
22
0
13 Jun 2021
A Stochastic Optimization Framework for Fair Risk Minimization
A Stochastic Optimization Framework for Fair Risk Minimization
Andrew Lowy
Sina Baharlouei
Rakesh Pavan
Meisam Razaviyayn
Ahmad Beirami
FaML
69
21
0
24 Feb 2021
Fair Training of Decision Tree Classifiers
Fair Training of Decision Tree Classifiers
Francesco Ranzato
Caterina Urban
Marco Zanella
FaML
47
12
0
04 Jan 2021
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
324
500
0
31 Dec 2020
Justicia: A Stochastic SAT Approach to Formally Verify Fairness
Justicia: A Stochastic SAT Approach to Formally Verify Fairness
Bishwamittra Ghosh
D. Basu
Kuldeep S. Meel
159
41
0
14 Sep 2020
Fair Regression with Wasserstein Barycenters
Fair Regression with Wasserstein Barycenters
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
97
108
0
12 Jun 2020
Ethical Adversaries: Towards Mitigating Unfairness with Adversarial
  Machine Learning
Ethical Adversaries: Towards Mitigating Unfairness with Adversarial Machine Learning
Pieter Delobelle
Paul Temple
Gilles Perrouin
Benoit Frénay
P. Heymans
Bettina Berendt
AAMLFaML
134
16
0
14 May 2020
Deontological Ethics By Monotonicity Shape Constraints
Deontological Ethics By Monotonicity Shape Constraints
S. Wang
Maya R. Gupta
69
21
0
31 Jan 2020
Auditing and Achieving Intersectional Fairness in Classification
  Problems
Auditing and Achieving Intersectional Fairness in Classification Problems
Giulio Morina
V. Oliinyk
J. Waton
Ines Marusic
K. Georgatzis
FaML
73
41
0
04 Nov 2019
The Impact of Data Preparation on the Fairness of Software Systems
The Impact of Data Preparation on the Fairness of Software Systems
Inês Valentim
Nuno Lourenço
Nuno Antunes
63
26
0
05 Oct 2019
Learning Fair Rule Lists
Learning Fair Rule Lists
Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
61
11
0
09 Sep 2019
Pairwise Fairness for Ranking and Regression
Pairwise Fairness for Ranking and Regression
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
S. Wang
98
115
0
12 Jun 2019
General Fair Empirical Risk Minimization
General Fair Empirical Risk Minimization
L. Oneto
Michele Donini
Massimiliano Pontil
FaML
106
40
0
29 Jan 2019
Intersectionality: Multiple Group Fairness in Expectation Constraints
Intersectionality: Multiple Group Fairness in Expectation Constraints
Jack K. Fitzsimons
Michael A. Osborne
Stephen J. Roberts
FaML
35
7
0
25 Nov 2018
An exploration of algorithmic discrimination in data and classification
An exploration of algorithmic discrimination in data and classification
Martin Wahl
Jiuyong Li
Feiyue Ye
Lin Liu
T. Le
Ping Xiong
59
1
0
06 Nov 2018
A General Framework for Fair Regression
A General Framework for Fair Regression
Jack K. Fitzsimons
AbdulRahman Al Ali
Michael A. Osborne
Stephen J. Roberts
FaML
140
37
0
10 Oct 2018
Gradient Reversal Against Discrimination
Gradient Reversal Against Discrimination
Edward Raff
Jared Sylvester
76
38
0
01 Jul 2018
1