ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.08244
  4. Cited By
How Well Can Generative Adversarial Networks Learn Densities: A
  Nonparametric View

How Well Can Generative Adversarial Networks Learn Densities: A Nonparametric View

21 December 2017
Tengyuan Liang
    GAN
ArXivPDFHTML

Papers citing "How Well Can Generative Adversarial Networks Learn Densities: A Nonparametric View"

4 / 4 papers shown
Title
Bounds on Lp errors in density ratio estimation via f-divergence loss functions
Bounds on Lp errors in density ratio estimation via f-divergence loss functions
Yoshiaki Kitazawa
16
0
0
02 Oct 2024
A Selective Overview of Deep Learning
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
25
136
0
10 Apr 2019
Nonparametric Density Estimation & Convergence Rates for GANs under
  Besov IPM Losses
Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses
Ananya Uppal
Shashank Singh
Barnabás Póczós
27
52
0
09 Feb 2019
Interaction Matters: A Note on Non-asymptotic Local Convergence of
  Generative Adversarial Networks
Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks
Tengyuan Liang
J. Stokes
27
211
0
16 Feb 2018
1