ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.04461
  4. Cited By
Size-to-depth: A New Perspective for Single Image Depth Estimation

Size-to-depth: A New Perspective for Single Image Depth Estimation

13 January 2018
Yiran Wu
Sihao Ying
Lianmin Zheng
ArXivPDFHTML

Papers citing "Size-to-depth: A New Perspective for Single Image Depth Estimation"

3 / 3 papers shown
Title
Pseudo Supervised Monocular Depth Estimation with Teacher-Student
  Network
Pseudo Supervised Monocular Depth Estimation with Teacher-Student Network
Huan Liu
Junsong Yuan
Chen Wang
Jun Chen
MDE
33
4
0
22 Oct 2021
DISCO: accurate Discrete Scale Convolutions
DISCO: accurate Discrete Scale Convolutions
Ivan Sosnovik
A. Moskalev
A. Smeulders
26
31
0
04 Jun 2021
ADAADepth: Adapting Data Augmentation and Attention for Self-Supervised
  Monocular Depth Estimation
ADAADepth: Adapting Data Augmentation and Attention for Self-Supervised Monocular Depth Estimation
V. Kaushik
Kartik Jindgar
Brejesh Lall
MDE
31
18
0
01 Mar 2021
1