ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.08512
  4. Cited By
Inference in high-dimensional graphical models

Inference in high-dimensional graphical models

25 January 2018
Jana Janková
Sara van de Geer
ArXiv (abs)PDFHTML

Papers citing "Inference in high-dimensional graphical models"

13 / 13 papers shown
Title
Rates of convergence and normal approximations for estimators of local
  dependence random graph models
Rates of convergence and normal approximations for estimators of local dependence random graph models
Jonathan R. Stewart
63
1
0
17 Apr 2024
Application of fused graphical lasso to statistical inference for
  multiple sparse precision matrices
Application of fused graphical lasso to statistical inference for multiple sparse precision matrices
Qiuyan Zhang
Zhidong Bai
Lingrui Li
Hu Yang
82
0
0
02 Mar 2023
Uncertainty quantification for sparse Fourier recovery
Uncertainty quantification for sparse Fourier recovery
F. Hoppe
Felix Krahmer
C. M. Verdun
Marion I. Menzel
Holger Rauhut
99
7
0
30 Dec 2022
Posterior contraction and uncertainty quantification for the
  multivariate spike-and-slab LASSO
Posterior contraction and uncertainty quantification for the multivariate spike-and-slab LASSO
Yunyi Shen
Sameer K. Deshpande
31
2
0
09 Sep 2022
Inferential Theory for Granular Instrumental Variables in High
  Dimensions
Inferential Theory for Granular Instrumental Variables in High Dimensions
Saman Banafti
Tae-Hwy Lee
30
3
0
17 Jan 2022
Statistical Inference for Networks of High-Dimensional Point Processes
Statistical Inference for Networks of High-Dimensional Point Processes
Xu Wang
Mladen Kolar
Ali Shojaie
111
12
0
15 Jul 2020
Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph
  Recovery
Thresholded Adaptive Validation: Tuning the Graphical Lasso for Graph Recovery
M. Laszkiewicz
Asja Fischer
Johannes Lederer
81
6
0
01 May 2020
Gaussian Graphical Model exploration and selection in high dimension low
  sample size setting
Gaussian Graphical Model exploration and selection in high dimension low sample size setting
Thomas Lartigue
Simona Bottani
Stéphanie Baron
O. Colliot
S. Durrleman
S. Allassonnière
42
6
0
11 Mar 2020
High-Dimensional Granger Causality Tests with an Application to VIX and
  News
High-Dimensional Granger Causality Tests with an Application to VIX and News
Andrii Babii
Eric Ghysels
Jonas Striaukas
46
106
0
13 Dec 2019
Distributionally Robust Formulation and Model Selection for the
  Graphical Lasso
Distributionally Robust Formulation and Model Selection for the Graphical Lasso
Pedro Cisneros-Velarde
Sang-Yun Oh
Alexander Petersen
OOD
79
11
0
22 May 2019
De-biased graphical Lasso for high-frequency data
De-biased graphical Lasso for high-frequency data
Yuta Koike
15
9
0
04 May 2019
Joint Nonparametric Precision Matrix Estimation with Confounding
Joint Nonparametric Precision Matrix Estimation with Confounding
Sinong Geng
Mladen Kolar
Oluwasanmi Koyejo
77
9
0
16 Oct 2018
Confidence intervals for high-dimensional Cox models
Confidence intervals for high-dimensional Cox models
Yi Yu
Jelena Bradic
R. Samworth
64
30
0
03 Mar 2018
1