Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.08640
Cited By
Considerations When Learning Additive Explanations for Black-Box Models
26 January 2018
S. Tan
Giles Hooker
Paul Koch
Albert Gordo
R. Caruana
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Considerations When Learning Additive Explanations for Black-Box Models"
6 / 6 papers shown
Title
Disentangling Visual Transformers: Patch-level Interpretability for Image Classification
Guillaume Jeanneret
Loïc Simon
F. Jurie
ViT
49
0
0
24 Feb 2025
Unifying Feature-Based Explanations with Functional ANOVA and Cooperative Game Theory
Fabian Fumagalli
Maximilian Muschalik
Eyke Hüllermeier
Barbara Hammer
J. Herbinger
FAtt
39
1
0
22 Dec 2024
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
Evandro S. Ortigossa
Fábio F. Dias
Brian Barr
Claudio T. Silva
L. G. Nonato
FAtt
56
2
0
25 Apr 2024
How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations
Sérgio Jesus
Catarina Belém
Vladimir Balayan
João Bento
Pedro Saleiro
P. Bizarro
João Gama
136
119
0
21 Jan 2021
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
48
195
0
06 Apr 2017
1