Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1801.10578
Cited By
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
31 January 2018
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach"
50 / 258 papers shown
Title
Lipschitz-aware Linearity Grafting for Certified Robustness
Yongjin Han
Suhyun Kim
AAML
56
0
0
29 Oct 2025
RAISE: A Unified Framework for Responsible AI Scoring and Evaluation
Loc Phuc Truong Nguyen
Hung Thanh Do
ELM
106
0
0
21 Oct 2025
Bridging Symmetry and Robustness: On the Role of Equivariance in Enhancing Adversarial Robustness
Longwei Wang
Ifrat Ikhtear Uddin
KC Santosh
Chaowei Zhang
Xiao Qin
Yang Zhou
AAML
172
0
0
17 Oct 2025
Injecting Hallucinations in Autonomous Vehicles: A Component-Agnostic Safety Evaluation Framework
Alexandre Moreira Nascimento
Gabriel Kenji Godoy Shimanuki
Lucio Flavio Vismari
João Batista Camargo Jr
Jorge Rady de Almeida Jr
Paulo Sergio Cugnasca
Anna Carolina Muller Queiroz
Jeremy Noah Bailenson
91
0
0
09 Oct 2025
Parameterized Hardness of Zonotope Containment and Neural Network Verification
Vincent Froese
Moritz Grillo
Christoph Hertrich
Moritz Stargalla
102
2
0
26 Sep 2025
Stochastic Sample Approximations of (Local) Moduli of Continuity
Rodion Nazarov
Allen Gehret
Robert Shorten
Jakub Mareˇcek
56
0
0
18 Sep 2025
Get Global Guarantees: On the Probabilistic Nature of Perturbation Robustness
Wenchuan Mu
Kwan Hui Lim
AAML
61
2
0
26 Aug 2025
Exploring Cross-Stage Adversarial Transferability in Class-Incremental Continual Learning
Jungwoo Kim
Jong-Seok Lee
AAML
CLL
SILM
75
0
0
12 Aug 2025
NCCR: to Evaluate the Robustness of Neural Networks and Adversarial Examples
Pu Shi
Fu Song
Wenjie Wang
AAML
144
0
0
29 Jul 2025
Quantifying Classifier Utility under Local Differential Privacy
Ye Zheng
Yidan Hu
136
0
0
03 Jul 2025
Towards Universal Offline Black-Box Optimization via Learning Language Model Embeddings
Rong-Xi Tan
Ming Chen
Ke Xue
Yao Wang
Yaoyuan Wang
Sheng Fu
Chao Qian
OffRL
163
2
0
08 Jun 2025
RDI: An adversarial robustness evaluation metric for deep neural networks based on model statistical features
Conference on Uncertainty in Artificial Intelligence (UAI), 2025
Jialei Song
Xingquan Zuo
Feiyang Wang
Hai Huang
Tianle Zhang
AAML
743
0
0
16 Apr 2025
Lipschitz Constant Meets Condition Number: Learning Robust and Compact Deep Neural Networks
Yangqi Feng
S. J. Lin
Baoyuan Gao
Xian Wei
AAML
258
2
0
26 Mar 2025
Rethinking Robustness in Machine Learning: A Posterior Agreement Approach
João B. S. Carvalho
Victor Jimenez Rodriguez
Alessandro Torcinovich
Antonio Emanuele Cinà
Carlos Cotrini
Lea Schönherr
J. M. Buhmann
OOD
241
0
0
20 Mar 2025
Retention Score: Quantifying Jailbreak Risks for Vision Language Models
AAAI Conference on Artificial Intelligence (AAAI), 2024
Zaitang Li
Pin-Yu Chen
Tsung-Yi Ho
AAML
154
1
0
23 Dec 2024
Set-Valued Sensitivity Analysis of Deep Neural Networks
AAAI Conference on Artificial Intelligence (AAAI), 2024
Xin Wang
Feiling wang
X. Ban
162
0
0
15 Dec 2024
Improving Graph Neural Networks via Adversarial Robustness Evaluation
Yongyu Wang
AAML
183
0
0
14 Dec 2024
Establishing and Evaluating Trustworthy AI: Overview and Research Challenges
Dominik Kowald
S. Scher
Viktoria Pammer-Schindler
Peter Müllner
Kerstin Waxnegger
...
Andreas Truegler
Eduardo E. Veas
Roman Kern
Tomislav Nad
Simone Kopeinik
211
22
0
15 Nov 2024
Achieving Domain-Independent Certified Robustness via Knowledge Continuity
Neural Information Processing Systems (NeurIPS), 2024
Alan Sun
Chiyu Ma
Kenneth Ge
Soroush Vosoughi
247
2
0
03 Nov 2024
Estimating Neural Network Robustness via Lipschitz Constant and Architecture Sensitivity
Abulikemu Abuduweili
Changliu Liu
157
2
0
30 Oct 2024
Trustworthy Text-to-Image Diffusion Models: A Timely and Focused Survey
Yi Zhang
Zhen Chen
Chih-Hong Cheng
Wenjie Ruan
Xiaowei Huang
Dezong Zhao
David Flynn
Siddartha Khastgir
Xingyu Zhao
MedIm
372
6
0
26 Sep 2024
A Margin-Maximizing Fine-Grained Ensemble Method
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2024
Jinghui Yuan
Hao Chen
Renwei Luo
Feiping Nie
198
7
0
19 Sep 2024
Layerwise Change of Knowledge in Neural Networks
International Conference on Machine Learning (ICML), 2024
Xu Cheng
Lei Cheng
Zhaoran Peng
Yang Xu
Tian Han
Quanshi Zhang
KELM
FAtt
207
6
0
13 Sep 2024
A practical approach to evaluating the adversarial distance for machine learning classifiers
Georg Siedel
Ekagra Gupta
Andrey Morozov
AAML
158
1
0
05 Sep 2024
Detecting Brittle Decisions for Free: Leveraging Margin Consistency in Deep Robust Classifiers
Jonas Ngnawé
Sabyasachi Sahoo
Y. Pequignot
Frédéric Precioso
Christian Gagné
AAML
273
3
0
26 Jun 2024
RMF: A Risk Measurement Framework for Machine Learning Models
ARES (ARES), 2024
Jan Schröder
Jakub Breier
112
1
0
15 Jun 2024
Provable Bounds on the Hessian of Neural Networks: Derivative-Preserving Reachability Analysis
Sina Sharifi
Mahyar Fazlyab
161
1
0
06 Jun 2024
Ferrari: Federated Feature Unlearning via Optimizing Feature Sensitivity
Neural Information Processing Systems (NeurIPS), 2024
Hanlin Gu
W. Ong
Chee Seng Chan
Lixin Fan
MU
273
16
0
23 May 2024
Certified Robust Accuracy of Neural Networks Are Bounded due to Bayes Errors
International Conference on Computer Aided Verification (CAV), 2024
Ruihan Zhang
Jun Sun
AAML
204
7
0
19 May 2024
Bounding the Expected Robustness of Graph Neural Networks Subject to Node Feature Attacks
Yassine Abbahaddou
Sofiane Ennadir
J. Lutzeyer
Michalis Vazirgiannis
Henrik Bostrom
AAML
OOD
182
13
0
27 Apr 2024
Interval Abstractions for Robust Counterfactual Explanations
Junqi Jiang
Francesco Leofante
Antonio Rago
Francesca Toni
189
3
0
21 Apr 2024
A Survey of Neural Network Robustness Assessment in Image Recognition
Jie Wang
Jun Ai
Minyan Lu
Haoran Su
Dan Yu
Yutao Zhang
Junda Zhu
Jingyu Liu
AAML
243
4
0
12 Apr 2024
Specification Overfitting in Artificial Intelligence
Artificial Intelligence Review (Artif Intell Rev), 2024
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
490
8
0
13 Mar 2024
DeepCDCL: An CDCL-based Neural Network Verification Framework
Zongxin Liu
Pengfei Yang
Lijun Zhang
Xiaowei Huang
158
7
0
12 Mar 2024
Spectrum Extraction and Clipping for Implicitly Linear Layers
A. Boroojeny
Matus Telgarsky
Hari Sundaram
MLT
192
7
0
25 Feb 2024
ProTIP: Probabilistic Robustness Verification on Text-to-Image Diffusion Models against Stochastic Perturbation
Yi Zhang
Yun Tang
Wenjie Ruan
Xiaowei Huang
Siddartha Khastgir
P. Jennings
Xingyu Zhao
AAML
258
11
0
23 Feb 2024
Trust Regions for Explanations via Black-Box Probabilistic Certification
Amit Dhurandhar
Swagatam Haldar
Dennis L. Wei
Karthikeyan N. Ramamurthy
FAtt
320
3
0
17 Feb 2024
Towards Understanding the Word Sensitivity of Attention Layers: A Study via Random Features
International Conference on Machine Learning (ICML), 2024
Simone Bombari
Marco Mondelli
217
6
0
05 Feb 2024
Trustworthy Distributed AI Systems: Robustness, Privacy, and Governance
Wenqi Wei
Ling Liu
328
40
0
02 Feb 2024
An Optimal Transport Approach for Computing Adversarial Training Lower Bounds in Multiclass Classification
Nicolas García Trillos
Matt Jacobs
Jakwang Kim
Matthew Werenski
AAML
152
4
0
17 Jan 2024
How Smooth Is Attention?
Valérie Castin
Pierre Ablin
Gabriel Peyré
AAML
270
22
0
22 Dec 2023
BELT: Old-School Backdoor Attacks can Evade the State-of-the-Art Defense with Backdoor Exclusivity Lifting
IEEE Symposium on Security and Privacy (S&P), 2023
Huming Qiu
Junjie Sun
Mi Zhang
Xudong Pan
Min Yang
AAML
241
6
0
08 Dec 2023
Relationship between Model Compression and Adversarial Robustness: A Review of Current Evidence
IEEE Symposium Series on Computational Intelligence (IEEE-SSCI), 2023
Svetlana Pavlitska
Hannes Grolig
J. Marius Zöllner
AAML
194
4
0
27 Nov 2023
Training robust and generalizable quantum models
Julian Berberich
Daniel Fink
Daniel Pranjić
C. Tutschku
Christian Holm
OOD
296
20
0
20 Nov 2023
LUNA: A Model-Based Universal Analysis Framework for Large Language Models
IEEE Transactions on Software Engineering (TSE), 2023
Da Song
Xuan Xie
Yuheng Huang
Derui Zhu
Yuheng Huang
Felix Juefei Xu
Lei Ma
ALM
278
9
0
22 Oct 2023
A Geometrical Approach to Evaluate the Adversarial Robustness of Deep Neural Networks
Yang Wang
B. Dong
Ke Xu
Haiyin Piao
Yufei Ding
Baocai Yin
Xin Yang
AAML
134
3
0
10 Oct 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Neural Information Processing Systems (NeurIPS), 2023
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
532
19
0
29 Sep 2023
Evaluating Adversarial Robustness with Expected Viable Performance
International Conference on Machine Learning and Applications (ICMLA), 2023
Ryan McCoppin
Colin Dawson
Sean M. Kennedy
L. Blaha
AAML
147
0
0
18 Sep 2023
Hazards in Deep Learning Testing: Prevalence, Impact and Recommendations
Salah Ghamizi
Maxime Cordy
Yuejun Guo
Mike Papadakis
And Yves Le Traon
145
1
0
11 Sep 2023
Exploring the Robustness of Human Parsers Towards Common Corruptions
IEEE Transactions on Image Processing (IEEE TIP), 2023
Sanyi Zhang
Xiaochun Cao
Rui Wang
Guohong Qi
Jie Zhou
143
1
0
02 Sep 2023
1
2
3
4
5
6
Next