Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1801.10578
Cited By
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
31 January 2018
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach"
50 / 258 papers shown
Title
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
Journal of machine learning research (JMLR), 2022
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
440
62
0
01 May 2022
Testing robustness of predictions of trained classifiers against naturally occurring perturbations
S. Scher
A. Trugler
OOD
AAML
265
3
0
21 Apr 2022
How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
International Conference on Learning Representations (ICLR), 2022
Yimeng Zhang
Yuguang Yao
Jinghan Jia
Jinfeng Yi
Min-Fong Hong
Shiyu Chang
Sijia Liu
AAML
272
39
0
27 Mar 2022
A Survey of Robust Adversarial Training in Pattern Recognition: Fundamental, Theory, and Methodologies
Pattern Recognition (Pattern Recogn.), 2022
Zhuang Qian
Kaizhu Huang
Qiufeng Wang
Xu-Yao Zhang
OOD
AAML
ObjD
191
89
0
26 Mar 2022
On the sensitivity of pose estimation neural networks: rotation parameterizations, Lipschitz constants, and provable bounds
Trevor Avant
K. Morgansen
61
2
0
16 Mar 2022
A Survey of Adversarial Defences and Robustness in NLP
Shreyansh Goyal
Sumanth Doddapaneni
Mitesh M.Khapra
B. Ravindran
AAML
351
35
0
12 Mar 2022
Adaptative Perturbation Patterns: Realistic Adversarial Learning for Robust Intrusion Detection
Future Internet (FI), 2022
João Vitorino
Nuno Oliveira
Isabel Praça
AAML
114
41
0
08 Mar 2022
A Domain-Theoretic Framework for Robustness Analysis of Neural Networks
Mathematical Structures in Computer Science (MSCS), 2022
Can Zhou
R. A. Shaikh
Yiran Li
Amin Farjudian
OOD
257
4
0
01 Mar 2022
Mitigating Closed-model Adversarial Examples with Bayesian Neural Modeling for Enhanced End-to-End Speech Recognition
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2022
Chao-Han Huck Yang
Zeeshan Ahmed
Yile Gu
Joseph Szurley
Roger Ren
Linda Liu
A. Stolcke
I. Bulyko
AAML
166
4
0
17 Feb 2022
Holistic Adversarial Robustness of Deep Learning Models
AAAI Conference on Artificial Intelligence (AAAI), 2022
Pin-Yu Chen
Sijia Liu
AAML
317
21
0
15 Feb 2022
Excitement Surfeited Turns to Errors: Deep Learning Testing Framework Based on Excitable Neurons
Information Sciences (Inf. Sci.), 2022
Haibo Jin
Ruoxi Chen
Haibin Zheng
Jinyin Chen
Yao Cheng
Yue Yu
Xianglong Liu
AAML
176
6
0
12 Feb 2022
Evaluation of Neural Networks Defenses and Attacks using NDCG and Reciprocal Rank Metrics
International Journal of Information Security (JIS), 2022
Haya Brama
L. Dery
Tal Grinshpoun
AAML
132
9
0
10 Jan 2022
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
269
14
0
14 Dec 2021
Reliability Assessment and Safety Arguments for Machine Learning Components in System Assurance
Yizhen Dong
Wei Huang
Vibhav Bharti
V. Cox
Alec Banks
Sen Wang
Xingyu Zhao
S. Schewe
Xiaowei Huang
193
24
0
30 Nov 2021
Resilience from Diversity: Population-based approach to harden models against adversarial attacks
Jasser Jasser
Ivan I. Garibay
AAML
148
2
0
19 Nov 2021
Discovering and Explaining the Representation Bottleneck of DNNs
International Conference on Learning Representations (ICLR), 2021
Huiqi Deng
Qihan Ren
Hao Zhang
Quanshi Zhang
288
70
0
11 Nov 2021
Tightening the Approximation Error of Adversarial Risk with Auto Loss Function Search
Pengfei Xia
Ziqiang Li
Bin Li
AAML
368
3
0
09 Nov 2021
Visualizing the Emergence of Intermediate Visual Patterns in DNNs
Mingjie Li
Shaobo Wang
Quanshi Zhang
207
11
0
05 Nov 2021
ε-weakened Robustness of Deep Neural Networks
International Symposium on Software Testing and Analysis (ISSTA), 2021
Pei Huang
Yuting Yang
Minghao Liu
Fuqi Jia
Feifei Ma
Jian Zhang
AAML
139
18
0
29 Oct 2021
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zinan Lin
274
128
0
26 Oct 2021
Characterizing Learning Dynamics of Deep Neural Networks via Complex Networks
Emanuele La Malfa
G. Malfa
Giuseppe Nicosia
Vito Latora
121
14
0
06 Oct 2021
Trustworthy AI: From Principles to Practices
Yue Liu
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
367
494
0
04 Oct 2021
Compressive Visual Representations
Neural Information Processing Systems (NeurIPS), 2021
Kuang-Huei Lee
Anurag Arnab
S. Guadarrama
John F. Canny
Ian S. Fischer
SSL
242
52
0
27 Sep 2021
On the regularized risk of distributionally robust learning over deep neural networks
Camilo A. Garcia Trillos
Nicolas García Trillos
OOD
245
11
0
13 Sep 2021
Lipschitz Continuity Guided Knowledge Distillation
IEEE International Conference on Computer Vision (ICCV), 2021
Yuzhang Shang
Bin Duan
Ziliang Zong
Liqiang Nie
Yan Yan
157
30
0
29 Aug 2021
Interpreting Attributions and Interactions of Adversarial Attacks
Xin Eric Wang
Shuyu Lin
Hao Zhang
Yufei Zhu
Quanshi Zhang
AAML
FAtt
123
18
0
16 Aug 2021
Neural Architecture Dilation for Adversarial Robustness
Yanxi Li
Zhaohui Yang
Yunhe Wang
Chang Xu
AAML
135
25
0
16 Aug 2021
Fairness Properties of Face Recognition and Obfuscation Systems
USENIX Security Symposium (USENIX Security), 2021
Harrison Rosenberg
Brian Tang
Kassem Fawaz
S. Jha
PICV
115
17
0
05 Aug 2021
Provable Lipschitz Certification for Generative Models
Matt Jordan
A. Dimakis
96
14
0
06 Jul 2021
Adversarial Machine Learning for Cybersecurity and Computer Vision: Current Developments and Challenges
B. Xi
AAML
75
32
0
30 Jun 2021
A Survey on Trust Metrics for Autonomous Robotic Systems
Advances in Artificial Intelligence and Machine Learning (AAIML), 2021
Vincenzo DiLuoffo
W. Michalson
127
2
0
28 Jun 2021
Improving Neural Network Robustness via Persistency of Excitation
American Control Conference (ACC), 2021
Kaustubh Sridhar
O. Sokolsky
Insup Lee
James Weimer
AAML
200
21
0
03 Jun 2021
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
Jingfeng Zhang
Xilie Xu
Bo Han
Tongliang Liu
Gang Niu
Li-zhen Cui
Masashi Sugiyama
NoLa
AAML
168
9
0
31 May 2021
LipBaB: Computing exact Lipschitz constant of ReLU networks
International Conference on Artificial Neural Networks (ICANN), 2021
Aritra Bhowmick
Meenakshi D'Souza
G. S. Raghavan
113
21
0
12 May 2021
Model Error Propagation via Learned Contraction Metrics for Safe Feedback Motion Planning of Unknown Systems
IEEE Conference on Decision and Control (CDC), 2021
Glen Chou
N. Ozay
Dmitry Berenson
202
27
0
18 Apr 2021
Orthogonalizing Convolutional Layers with the Cayley Transform
International Conference on Learning Representations (ICLR), 2021
Asher Trockman
J. Zico Kolter
186
125
0
14 Apr 2021
Pay attention to your loss: understanding misconceptions about 1-Lipschitz neural networks
Neural Information Processing Systems (NeurIPS), 2021
Louis Bethune
Thibaut Boissin
M. Serrurier
Franck Mamalet
Corentin Friedrich
Alberto González Sanz
324
29
0
11 Apr 2021
Learning Lipschitz Feedback Policies from Expert Demonstrations: Closed-Loop Guarantees, Generalization and Robustness
Abed AlRahman Al Makdah
Vishaal Krishnan
Fabio Pasqualetti
160
0
0
30 Mar 2021
Recent Advances in Large Margin Learning
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Yiwen Guo
Changshui Zhang
AAML
AI4CE
236
18
0
25 Mar 2021
Attack as Defense: Characterizing Adversarial Examples using Robustness
International Symposium on Software Testing and Analysis (ISSTA), 2021
Zhe Zhao
Guangke Chen
Jingyi Wang
Yiwei Yang
Fu Song
Jun Sun
AAML
142
36
0
13 Mar 2021
A Unified Game-Theoretic Interpretation of Adversarial Robustness
Jie Ren
Die Zhang
Yisen Wang
Lu Chen
Zhanpeng Zhou
...
Feng He
Xin Eric Wang
Meng Zhou
Jie Shi
Quanshi Zhang
AAML
232
26
0
12 Mar 2021
Abstraction and Symbolic Execution of Deep Neural Networks with Bayesian Approximation of Hidden Features
Nicolas Berthier
Amany Alshareef
James Sharp
S. Schewe
Xiaowei Huang
157
10
0
05 Mar 2021
Adversarial Examples can be Effective Data Augmentation for Unsupervised Machine Learning
AAAI Conference on Artificial Intelligence (AAAI), 2021
Chia-Yi Hsu
Pin-Yu Chen
Songtao Lu
Sijia Liu
Chia-Mu Yu
AAML
215
11
0
02 Mar 2021
Non-Singular Adversarial Robustness of Neural Networks
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021
Yu-Lin Tsai
Chia-Yi Hsu
Chia-Mu Yu
Pin-Yu Chen
AAML
OOD
131
5
0
23 Feb 2021
Training a Resilient Q-Network against Observational Interference
AAAI Conference on Artificial Intelligence (AAAI), 2021
Chao-Han Huck Yang
I-Te Danny Hung
Ouyang Yi
Pin-Yu Chen
OOD
189
17
0
18 Feb 2021
Modeling Extremes with d-max-decreasing Neural Networks
Conference on Uncertainty in Artificial Intelligence (UAI), 2021
Ali Hasan
Khalil Elkhalil
Yuting Ng
João M. Pereira
Sina Farsiu
Jose H. Blanchet
Vahid Tarokh
86
7
0
17 Feb 2021
Globally-Robust Neural Networks
International Conference on Machine Learning (ICML), 2021
Klas Leino
Zifan Wang
Matt Fredrikson
AAML
OOD
252
143
0
16 Feb 2021
Data Quality Matters For Adversarial Training: An Empirical Study
Chengyu Dong
Liyuan Liu
Jingbo Shang
AAML
163
12
0
15 Feb 2021
SPADE: A Spectral Method for Black-Box Adversarial Robustness Evaluation
International Conference on Machine Learning (ICML), 2021
Wuxinlin Cheng
Chenhui Deng
Zhiqiang Zhao
Yaohui Cai
Zhiru Zhang
Zhuo Feng
AAML
265
18
0
07 Feb 2021
Increasing the Confidence of Deep Neural Networks by Coverage Analysis
IEEE Transactions on Software Engineering (TSE), 2021
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
232
19
0
28 Jan 2021
Previous
1
2
3
4
5
6
Next