Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.00420
Cited By
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
1 February 2018
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples"
50 / 521 papers shown
Title
Purify++: Improving Diffusion-Purification with Advanced Diffusion Models and Control of Randomness
Boya Zhang
Weijian Luo
Zhihua Zhang
29
10
0
28 Oct 2023
Toward Stronger Textual Attack Detectors
Pierre Colombo
Marine Picot
Nathan Noiry
Guillaume Staerman
Pablo Piantanida
38
5
0
21 Oct 2023
On the Over-Memorization During Natural, Robust and Catastrophic Overfitting
Runqi Lin
Chaojian Yu
Bo Han
Tongliang Liu
22
7
0
13 Oct 2023
Promoting Robustness of Randomized Smoothing: Two Cost-Effective Approaches
Linbo Liu
T. Hoang
Lam M. Nguyen
Tsui-Wei Weng
AAML
19
0
0
11 Oct 2023
A Geometrical Approach to Evaluate the Adversarial Robustness of Deep Neural Networks
Yang Wang
B. Dong
Ke Xu
Haiyin Piao
Yufei Ding
Baocai Yin
Xin Yang
AAML
26
3
0
10 Oct 2023
Adversarial Examples Might be Avoidable: The Role of Data Concentration in Adversarial Robustness
Ambar Pal
Huaijin Hao
René Vidal
26
8
0
28 Sep 2023
Certifying LLM Safety against Adversarial Prompting
Aounon Kumar
Chirag Agarwal
Suraj Srinivas
Aaron Jiaxun Li
S. Feizi
Himabindu Lakkaraju
AAML
27
164
0
06 Sep 2023
HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds
Hejia Geng
Peng Li
AAML
32
3
0
20 Aug 2023
Robust Mixture-of-Expert Training for Convolutional Neural Networks
Yihua Zhang
Ruisi Cai
Tianlong Chen
Guanhua Zhang
Huan Zhang
Pin-Yu Chen
Shiyu Chang
Zhangyang Wang
Sijia Liu
MoE
AAML
OOD
34
16
0
19 Aug 2023
Training on Foveated Images Improves Robustness to Adversarial Attacks
Muhammad Ahmed Shah
Bhiksha Raj
AAML
25
3
0
01 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
33
2
0
01 Aug 2023
A LLM Assisted Exploitation of AI-Guardian
Nicholas Carlini
ELM
SILM
24
15
0
20 Jul 2023
Enhancing Adversarial Robustness via Score-Based Optimization
Boya Zhang
Weijian Luo
Zhihua Zhang
DiffM
24
12
0
10 Jul 2023
Robust Ranking Explanations
Chao Chen
Chenghua Guo
Guixiang Ma
Ming Zeng
Xi Zhang
Sihong Xie
FAtt
AAML
35
0
0
08 Jul 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
22
1
0
29 Jun 2023
Adversarial Evasion Attacks Practicality in Networks: Testing the Impact of Dynamic Learning
Mohamed el Shehaby
Ashraf Matrawy
AAML
22
7
0
08 Jun 2023
On the Importance of Backbone to the Adversarial Robustness of Object Detectors
Xiao-Li Li
Hang Chen
Xiaolin Hu
AAML
38
4
0
27 May 2023
Certified Zeroth-order Black-Box Defense with Robust UNet Denoiser
Astha Verma
A. Subramanyam
Siddhesh Bangar
Naman Lal
R. Shah
Shiníchi Satoh
29
4
0
13 Apr 2023
On the Adversarial Inversion of Deep Biometric Representations
Gioacchino Tangari
Shreesh Keskar
H. Asghar
Dali Kaafar
AAML
31
2
0
12 Apr 2023
Generating Adversarial Samples in Mini-Batches May Be Detrimental To Adversarial Robustness
T. Redgrave
Colton R. Crum
AAML
21
0
0
30 Mar 2023
Beyond Empirical Risk Minimization: Local Structure Preserving Regularization for Improving Adversarial Robustness
Wei Wei
Jiahuan Zhou
Yingying Wu
AAML
13
0
0
29 Mar 2023
Provable Robustness for Streaming Models with a Sliding Window
Aounon Kumar
Vinu Sankar Sadasivan
S. Feizi
OOD
AAML
AI4TS
11
1
0
28 Mar 2023
Anti-DreamBooth: Protecting users from personalized text-to-image synthesis
T. Le
Hao Phung
Thuan Hoang Nguyen
Quan Dao
Ngoc N. Tran
Anh Tran
19
91
0
27 Mar 2023
Enhancing Multiple Reliability Measures via Nuisance-extended Information Bottleneck
Jongheon Jeong
Sihyun Yu
Hankook Lee
Jinwoo Shin
AAML
38
0
0
24 Mar 2023
Generalist: Decoupling Natural and Robust Generalization
Hongjun Wang
Yisen Wang
OOD
AAML
46
14
0
24 Mar 2023
Boosting Verified Training for Robust Image Classifications via Abstraction
Zhaodi Zhang
Zhiyi Xue
Yang Chen
Si Liu
Yueling Zhang
J. Liu
Min Zhang
33
4
0
21 Mar 2023
Immune Defense: A Novel Adversarial Defense Mechanism for Preventing the Generation of Adversarial Examples
Jinwei Wang
Hao Wu
Haihua Wang
Jiawei Zhang
X. Luo
Bin Ma
AAML
23
0
0
08 Mar 2023
A Comprehensive Study on Robustness of Image Classification Models: Benchmarking and Rethinking
Chang-Shu Liu
Yinpeng Dong
Wenzhao Xiang
X. Yang
Hang Su
Junyi Zhu
YueFeng Chen
Yuan He
H. Xue
Shibao Zheng
OOD
VLM
AAML
27
72
0
28 Feb 2023
Randomness in ML Defenses Helps Persistent Attackers and Hinders Evaluators
Keane Lucas
Matthew Jagielski
Florian Tramèr
Lujo Bauer
Nicholas Carlini
AAML
25
9
0
27 Feb 2023
Less is More: Data Pruning for Faster Adversarial Training
Yize Li
Pu Zhao
X. Lin
B. Kailkhura
Ryan Goldh
AAML
15
9
0
23 Feb 2023
PAD: Towards Principled Adversarial Malware Detection Against Evasion Attacks
Deqiang Li
Shicheng Cui
Yun Li
Jia Xu
Fu Xiao
Shouhuai Xu
AAML
48
17
0
22 Feb 2023
Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
AAML
27
35
0
10 Feb 2023
On the Robustness of Randomized Ensembles to Adversarial Perturbations
Hassan Dbouk
Naresh R Shanbhag
AAML
23
7
0
02 Feb 2023
Are Defenses for Graph Neural Networks Robust?
Felix Mujkanovic
Simon Geisler
Stephan Günnemann
Aleksandar Bojchevski
OOD
AAML
19
56
0
31 Jan 2023
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
Zhuoqun Huang
Neil G. Marchant
Keane Lucas
Lujo Bauer
O. Ohrimenko
Benjamin I. P. Rubinstein
AAML
24
15
0
31 Jan 2023
Language-Driven Anchors for Zero-Shot Adversarial Robustness
Xiao-Li Li
Wei Emma Zhang
Yining Liu
Zhan Hu
Bo-Wen Zhang
Xiaolin Hu
26
8
0
30 Jan 2023
Improving Adversarial Transferability with Scheduled Step Size and Dual Example
Zeliang Zhang
Peihan Liu
Xiaosen Wang
Chenliang Xu
AAML
21
3
0
30 Jan 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
30
18
0
29 Jan 2023
A Study on FGSM Adversarial Training for Neural Retrieval
Simon Lupart
S. Clinchant
AAML
24
7
0
25 Jan 2023
A Data-Centric Approach for Improving Adversarial Training Through the Lens of Out-of-Distribution Detection
Mohammad Azizmalayeri
Arman Zarei
Alireza Isavand
M. T. Manzuri
M. Rohban
OODD
35
0
0
25 Jan 2023
Explainability and Robustness of Deep Visual Classification Models
Jindong Gu
AAML
39
2
0
03 Jan 2023
On the Connection between Invariant Learning and Adversarial Training for Out-of-Distribution Generalization
Shiji Xin
Yifei Wang
Jingtong Su
Yisen Wang
OOD
21
7
0
18 Dec 2022
Confidence-aware Training of Smoothed Classifiers for Certified Robustness
Jongheon Jeong
Seojin Kim
Jinwoo Shin
AAML
19
7
0
18 Dec 2022
Robust Explanation Constraints for Neural Networks
Matthew Wicker
Juyeon Heo
Luca Costabello
Adrian Weller
FAtt
21
17
0
16 Dec 2022
Adversarial Example Defense via Perturbation Grading Strategy
Shaowei Zhu
Wanli Lyu
Bin Li
Z. Yin
Bin Luo
AAML
25
1
0
16 Dec 2022
On Evaluating Adversarial Robustness of Chest X-ray Classification: Pitfalls and Best Practices
Salah Ghamizi
Maxime Cordy
Michail Papadakis
Yves Le Traon
OOD
11
2
0
15 Dec 2022
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
27
5
0
15 Dec 2022
Understanding Zero-Shot Adversarial Robustness for Large-Scale Models
Chengzhi Mao
Scott Geng
Junfeng Yang
Xin Eric Wang
Carl Vondrick
VLM
36
59
0
14 Dec 2022
Adversarially Robust Video Perception by Seeing Motion
Lingyu Zhang
Chengzhi Mao
Junfeng Yang
Carl Vondrick
VGen
AAML
34
2
0
13 Dec 2022
Robust Perception through Equivariance
Chengzhi Mao
Lingyu Zhang
Abhishek Joshi
Junfeng Yang
Hongya Wang
Carl Vondrick
BDL
AAML
29
7
0
12 Dec 2022
Previous
1
2
3
4
5
...
9
10
11
Next