ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.02952
  4. Cited By
TSViz: Demystification of Deep Learning Models for Time-Series Analysis

TSViz: Demystification of Deep Learning Models for Time-Series Analysis

8 February 2018
Shoaib Ahmed Siddiqui
Dominique Mercier
Mohsin Munir
Andreas Dengel
Sheraz Ahmed
    FAtt
    AI4TS
ArXivPDFHTML

Papers citing "TSViz: Demystification of Deep Learning Models for Time-Series Analysis"

13 / 13 papers shown
Title
Interpreting Outliers in Time Series Data through Decoding Autoencoder
Interpreting Outliers in Time Series Data through Decoding Autoencoder
Patrick Knab
Sascha Marton
Christian Bartelt
Robert Fuder
26
1
0
03 Sep 2024
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction
Melkamu Mersha
Khang Lam
Joseph Wood
Ali AlShami
Jugal Kalita
XAI
AI4TS
67
28
0
30 Aug 2024
Explainable AI for Time Series via Virtual Inspection Layers
Explainable AI for Time Series via Virtual Inspection Layers
Johanna Vielhaben
Sebastian Lapuschkin
G. Montavon
Wojciech Samek
XAI
AI4TS
15
25
0
11 Mar 2023
Privacy Meets Explainability: A Comprehensive Impact Benchmark
Privacy Meets Explainability: A Comprehensive Impact Benchmark
S. Saifullah
Dominique Mercier
Adriano Lucieri
Andreas Dengel
Sheraz Ahmed
29
14
0
08 Nov 2022
Explainable AI for clinical and remote health applications: a survey on
  tabular and time series data
Explainable AI for clinical and remote health applications: a survey on tabular and time series data
Flavio Di Martino
Franca Delmastro
AI4TS
28
90
0
14 Sep 2022
Statistics and Deep Learning-based Hybrid Model for Interpretable
  Anomaly Detection
Statistics and Deep Learning-based Hybrid Model for Interpretable Anomaly Detection
Thabang Mathonsi
Terence L van Zyl
32
0
0
25 Feb 2022
Time to Focus: A Comprehensive Benchmark Using Time Series Attribution
  Methods
Time to Focus: A Comprehensive Benchmark Using Time Series Attribution Methods
Dominique Mercier
Jwalin Bhatt
Andreas Dengel
Sheraz Ahmed
AI4TS
22
11
0
08 Feb 2022
Time Series Forecasting With Deep Learning: A Survey
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TS
AI4CE
36
1,186
0
28 Apr 2020
TSInsight: A local-global attribution framework for interpretability in
  time-series data
TSInsight: A local-global attribution framework for interpretability in time-series data
Shoaib Ahmed Siddiqui
Dominique Mercier
Andreas Dengel
Sheraz Ahmed
FAtt
AI4TS
8
12
0
06 Apr 2020
Detecting and interpreting myocardial infarction using fully
  convolutional neural networks
Detecting and interpreting myocardial infarction using fully convolutional neural networks
Nils Strodthoff
C. Strodthoff
37
150
0
18 Jun 2018
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Google's Neural Machine Translation System: Bridging the Gap between
  Human and Machine Translation
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,743
0
26 Sep 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
287
5,837
0
08 Jul 2016
1