ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03471
  4. Cited By
Certified Robustness to Adversarial Examples with Differential Privacy

Certified Robustness to Adversarial Examples with Differential Privacy

9 February 2018
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
    SILM
    AAML
ArXivPDFHTML

Papers citing "Certified Robustness to Adversarial Examples with Differential Privacy"

50 / 157 papers shown
Title
Defending with Errors: Approximate Computing for Robustness of Deep
  Neural Networks
Defending with Errors: Approximate Computing for Robustness of Deep Neural Networks
Amira Guesmi
Ihsen Alouani
Khaled N. Khasawneh
M. Baklouti
T. Frikha
Mohamed Abid
Nael B. Abu-Ghazaleh
AAML
OOD
14
2
0
02 Nov 2022
Accelerating Certified Robustness Training via Knowledge Transfer
Accelerating Certified Robustness Training via Knowledge Transfer
Pratik Vaishnavi
Kevin Eykholt
Amir Rahmati
16
7
0
25 Oct 2022
Evolution of Neural Tangent Kernels under Benign and Adversarial
  Training
Evolution of Neural Tangent Kernels under Benign and Adversarial Training
Noel Loo
Ramin Hasani
Alexander Amini
Daniela Rus
AAML
28
12
0
21 Oct 2022
DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers
DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers
Gaurav Kumar Nayak
Ruchit Rawal
Anirban Chakraborty
11
3
0
17 Oct 2022
Certified Training: Small Boxes are All You Need
Certified Training: Small Boxes are All You Need
Mark Niklas Muller
Franziska Eckert
Marc Fischer
Martin Vechev
AAML
31
45
0
10 Oct 2022
IvySyn: Automated Vulnerability Discovery in Deep Learning Frameworks
IvySyn: Automated Vulnerability Discovery in Deep Learning Frameworks
Neophytos Christou
Di Jin
Vaggelis Atlidakis
Baishakhi Ray
V. Kemerlis
21
13
0
29 Sep 2022
DNNShield: Dynamic Randomized Model Sparsification, A Defense Against
  Adversarial Machine Learning
DNNShield: Dynamic Randomized Model Sparsification, A Defense Against Adversarial Machine Learning
Mohammad Hossein Samavatian
Saikat Majumdar
Kristin Barber
R. Teodorescu
AAML
11
2
0
31 Jul 2022
RUSH: Robust Contrastive Learning via Randomized Smoothing
Yijiang Pang
Boyang Liu
Jiayu Zhou
OOD
AAML
19
1
0
11 Jul 2022
Wild Networks: Exposure of 5G Network Infrastructures to Adversarial
  Examples
Wild Networks: Exposure of 5G Network Infrastructures to Adversarial Examples
Giovanni Apruzzese
Rodion Vladimirov
A.T. Tastemirova
P. Laskov
AAML
30
15
0
04 Jul 2022
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and
  Out Distribution Robustness
RegMixup: Mixup as a Regularizer Can Surprisingly Improve Accuracy and Out Distribution Robustness
Francesco Pinto
Harry Yang
Ser-Nam Lim
Philip H. S. Torr
P. Dokania
UQCV
25
34
0
29 Jun 2022
Increasing Confidence in Adversarial Robustness Evaluations
Increasing Confidence in Adversarial Robustness Evaluations
Roland S. Zimmermann
Wieland Brendel
Florian Tramèr
Nicholas Carlini
AAML
36
16
0
28 Jun 2022
Riemannian data-dependent randomized smoothing for neural networks
  certification
Riemannian data-dependent randomized smoothing for neural networks certification
Pol Labarbarie
H. Hajri
M. Arnaudon
23
4
0
21 Jun 2022
Transferable Graph Backdoor Attack
Transferable Graph Backdoor Attack
Shuiqiao Yang
Bao Gia Doan
Paul Montague
O. Vel
Tamas Abraham
S. Çamtepe
D. Ranasinghe
S. Kanhere
AAML
34
36
0
21 Jun 2022
On the Limitations of Stochastic Pre-processing Defenses
On the Limitations of Stochastic Pre-processing Defenses
Yue Gao
Ilia Shumailov
Kassem Fawaz
Nicolas Papernot
AAML
SILM
34
30
0
19 Jun 2022
Towards Evading the Limits of Randomized Smoothing: A Theoretical
  Analysis
Towards Evading the Limits of Randomized Smoothing: A Theoretical Analysis
Raphael Ettedgui
Alexandre Araujo
Rafael Pinot
Y. Chevaleyre
Jamal Atif
AAML
32
3
0
03 Jun 2022
Adversarial Attack on Attackers: Post-Process to Mitigate Black-Box
  Score-Based Query Attacks
Adversarial Attack on Attackers: Post-Process to Mitigate Black-Box Score-Based Query Attacks
Sizhe Chen
Zhehao Huang
Qinghua Tao
Yingwen Wu
Cihang Xie
X. Huang
AAML
108
28
0
24 May 2022
Smooth-Reduce: Leveraging Patches for Improved Certified Robustness
Smooth-Reduce: Leveraging Patches for Improved Certified Robustness
Ameya Joshi
Minh Pham
Minsu Cho
Leonid Boytsov
Filipe Condessa
J. Zico Kolter
C. Hegde
UQCV
AAML
8
2
0
12 May 2022
3DeformRS: Certifying Spatial Deformations on Point Clouds
3DeformRS: Certifying Spatial Deformations on Point Clouds
S. GabrielPérez
Juan C. Pérez
Motasem Alfarra
Silvio Giancola
Bernard Ghanem
3DPC
24
12
0
12 Apr 2022
Enabling All In-Edge Deep Learning: A Literature Review
Enabling All In-Edge Deep Learning: A Literature Review
Praveen Joshi
Mohammed Hasanuzzaman
Chandra Thapa
Haithem Afli
T. Scully
21
22
0
07 Apr 2022
SoK: On the Semantic AI Security in Autonomous Driving
SoK: On the Semantic AI Security in Autonomous Driving
Junjie Shen
Ningfei Wang
Ziwen Wan
Yunpeng Luo
Takami Sato
...
Zhenyu Zhong
Kang Li
Ziming Zhao
Chunming Qiao
Qi Alfred Chen
AAML
15
39
0
10 Mar 2022
Defending Black-box Skeleton-based Human Activity Classifiers
Defending Black-box Skeleton-based Human Activity Classifiers
He-Nan Wang
Yunfeng Diao
Zichang Tan
G. Guo
AAML
43
10
0
09 Mar 2022
Differential Privacy Amplification in Quantum and Quantum-inspired
  Algorithms
Differential Privacy Amplification in Quantum and Quantum-inspired Algorithms
Armando Angrisani
Mina Doosti
E. Kashefi
16
12
0
07 Mar 2022
Adversarially Robust Learning with Tolerance
Adversarially Robust Learning with Tolerance
H. Ashtiani
Vinayak Pathak
Ruth Urner
AAML
18
9
0
02 Mar 2022
Robust Probabilistic Time Series Forecasting
Robust Probabilistic Time Series Forecasting
Taeho Yoon
Youngsuk Park
Ernest K. Ryu
Yuyang Wang
AAML
AI4TS
18
18
0
24 Feb 2022
Differentially Private Speaker Anonymization
Differentially Private Speaker Anonymization
Ali Shahin Shamsabadi
B. M. L. Srivastava
A. Bellet
Nathalie Vauquier
Emmanuel Vincent
Mohamed Maouche
Marc Tommasi
Nicolas Papernot
MIACV
38
32
0
23 Feb 2022
Differentially Private Graph Classification with GNNs
Differentially Private Graph Classification with GNNs
Tamara T. Mueller
Johannes C. Paetzold
Chinmay Prabhakar
Dmitrii Usynin
Daniel Rueckert
Georgios Kaissis
37
18
0
05 Feb 2022
Smoothed Embeddings for Certified Few-Shot Learning
Smoothed Embeddings for Certified Few-Shot Learning
Mikhail Aleksandrovich Pautov
Olesya Kuznetsova
Nurislam Tursynbek
Aleksandr Petiushko
Ivan V. Oseledets
27
5
0
02 Feb 2022
Boundary Defense Against Black-box Adversarial Attacks
Boundary Defense Against Black-box Adversarial Attacks
Manjushree B. Aithal
Xiaohua Li
AAML
17
6
0
31 Jan 2022
Constrained Gradient Descent: A Powerful and Principled Evasion Attack
  Against Neural Networks
Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
Weiran Lin
Keane Lucas
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
AAML
29
5
0
28 Dec 2021
Mate! Are You Really Aware? An Explainability-Guided Testing Framework
  for Robustness of Malware Detectors
Mate! Are You Really Aware? An Explainability-Guided Testing Framework for Robustness of Malware Detectors
Ruoxi Sun
Minhui Xue
Gareth Tyson
Tian Dong
Shaofeng Li
Shuo Wang
Haojin Zhu
S. Çamtepe
Surya Nepal
AAML
33
14
0
19 Nov 2021
Robust and Information-theoretically Safe Bias Classifier against
  Adversarial Attacks
Robust and Information-theoretically Safe Bias Classifier against Adversarial Attacks
Lijia Yu
Xiao-Shan Gao
AAML
16
5
0
08 Nov 2021
Training Certifiably Robust Neural Networks with Efficient Local
  Lipschitz Bounds
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
27
76
0
02 Nov 2021
Combining Differential Privacy and Byzantine Resilience in Distributed
  SGD
Combining Differential Privacy and Byzantine Resilience in Distributed SGD
R. Guerraoui
Nirupam Gupta
Rafael Pinot
Sébastien Rouault
John Stephan
FedML
35
4
0
08 Oct 2021
Improving Adversarial Robustness for Free with Snapshot Ensemble
Improving Adversarial Robustness for Free with Snapshot Ensemble
Yihao Wang
AAML
UQCV
9
1
0
07 Oct 2021
Trustworthy AI: From Principles to Practices
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
117
355
0
04 Oct 2021
Local Intrinsic Dimensionality Signals Adversarial Perturbations
Local Intrinsic Dimensionality Signals Adversarial Perturbations
Sandamal Weerasinghe
T. Alpcan
S. Erfani
C. Leckie
Benjamin I. P. Rubinstein
AAML
15
0
0
24 Sep 2021
CC-Cert: A Probabilistic Approach to Certify General Robustness of
  Neural Networks
CC-Cert: A Probabilistic Approach to Certify General Robustness of Neural Networks
Mikhail Aleksandrovich Pautov
Nurislam Tursynbek
Marina Munkhoeva
Nikita Muravev
Aleksandr Petiushko
Ivan V. Oseledets
AAML
44
15
0
22 Sep 2021
An automatic differentiation system for the age of differential privacy
An automatic differentiation system for the age of differential privacy
Dmitrii Usynin
Alexander Ziller
Moritz Knolle
Andrew Trask
Kritika Prakash
Daniel Rueckert
Georgios Kaissis
23
3
0
22 Sep 2021
Advances in adversarial attacks and defenses in computer vision: A
  survey
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
On the Certified Robustness for Ensemble Models and Beyond
On the Certified Robustness for Ensemble Models and Beyond
Zhuolin Yang
Linyi Li
Xiaojun Xu
B. Kailkhura
Tao Xie
Bo-wen Li
AAML
13
48
0
22 Jul 2021
ROPUST: Improving Robustness through Fine-tuning with Photonic
  Processors and Synthetic Gradients
ROPUST: Improving Robustness through Fine-tuning with Photonic Processors and Synthetic Gradients
Alessandro Cappelli
Julien Launay
Laurent Meunier
Ruben Ohana
Iacopo Poli
AAML
10
4
0
06 Jul 2021
Smoothed Differential Privacy
Smoothed Differential Privacy
Ao Liu
Yu-Xiang Wang
Lirong Xia
20
0
0
04 Jul 2021
Policy Smoothing for Provably Robust Reinforcement Learning
Policy Smoothing for Provably Robust Reinforcement Learning
Aounon Kumar
Alexander Levine
S. Feizi
AAML
15
54
0
21 Jun 2021
Adversarial Training Helps Transfer Learning via Better Representations
Adversarial Training Helps Transfer Learning via Better Representations
Zhun Deng
Linjun Zhang
Kailas Vodrahalli
Kenji Kawaguchi
James Y. Zou
GAN
36
52
0
18 Jun 2021
Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
  based Perception in Autonomous Driving Under Physical-World Attacks
Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion based Perception in Autonomous Driving Under Physical-World Attacks
Yulong Cao*
Ningfei Wang*
Chaowei Xiao
Dawei Yang
Jin Fang
Ruigang Yang
Qi Alfred Chen
Mingyan D. Liu
Bo-wen Li
AAML
13
217
0
17 Jun 2021
CRFL: Certifiably Robust Federated Learning against Backdoor Attacks
CRFL: Certifiably Robust Federated Learning against Backdoor Attacks
Chulin Xie
Minghao Chen
Pin-Yu Chen
Bo-wen Li
FedML
28
164
0
15 Jun 2021
Adversarial Robustness via Fisher-Rao Regularization
Adversarial Robustness via Fisher-Rao Regularization
Marine Picot
Francisco Messina
Malik Boudiaf
Fabrice Labeau
Ismail Ben Ayed
Pablo Piantanida
AAML
15
23
0
12 Jun 2021
Adversarial Training is Not Ready for Robot Learning
Adversarial Training is Not Ready for Robot Learning
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
19
34
0
15 Mar 2021
Membership Inference Attacks on Machine Learning: A Survey
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
30
412
0
14 Mar 2021
PRIMA: General and Precise Neural Network Certification via Scalable
  Convex Hull Approximations
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
Mark Niklas Muller
Gleb Makarchuk
Gagandeep Singh
Markus Püschel
Martin Vechev
33
90
0
05 Mar 2021
Previous
1234
Next