Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05312
Cited By
Learning Deep Disentangled Embeddings with the F-Statistic Loss
14 February 2018
Karl Ridgeway
Michael C. Mozer
FedML
DRL
CoGe
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Deep Disentangled Embeddings with the F-Statistic Loss"
47 / 47 papers shown
Title
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
23
0
0
25 Oct 2024
Next state prediction gives rise to entangled, yet compositional representations of objects
Tankred Saanum
Luca M. Schulze Buschoff
Peter Dayan
Eric Schulz
OCL
CoGe
OOD
30
1
0
07 Oct 2024
Deciphering the Role of Representation Disentanglement: Investigating Compositional Generalization in CLIP Models
Reza Abbasi
M. Rohban
M. Baghshah
CoGe
38
5
0
08 Jul 2024
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
34
4
0
08 Nov 2023
Improving SCGAN's Similarity Constraint and Learning a Better Disentangled Representation
Iman Yazdanpanah
Ali Eslamian
DRL
GAN
19
0
0
18 Oct 2023
Disentanglement Learning via Topology
Nikita Balabin
Daria Voronkova
I. Trofimov
Evgeny Burnaev
S. Barannikov
DRL
58
2
0
24 Aug 2023
Attribute Regularized Soft Introspective VAE: Towards Cardiac Attribute Regularization Through MRI Domains
Maxime Di Folco
Cosmin I. Bercea
J. Schnabel
28
0
0
24 Jul 2023
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment
Peng Jin
Hao Li
Ze-Long Cheng
Jinfa Huang
Zhennan Wang
Li-ming Yuan
Chang-rui Liu
Jie Chen
38
31
0
20 May 2023
Correcting Flaws in Common Disentanglement Metrics
Louis Mahon
Lei Shah
Thomas Lukasiewicz
CoGe
DRL
34
3
0
05 Apr 2023
Disentangled Representation Learning
Xin Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
35
78
0
21 Nov 2022
Neural Systematic Binder
Gautam Singh
Yeongbin Kim
Sungjin Ahn
OCL
32
36
0
02 Nov 2022
DOT-VAE: Disentangling One Factor at a Time
Vaishnavi Patil
Matthew Evanusa
J. JáJá
CoGe
DRL
CML
23
1
0
19 Oct 2022
Auto-Encoding Goodness of Fit
A. Palmer
Zhiyi Chi
Derek Aguiar
J. Bi
41
1
0
12 Oct 2022
Interpretable Disentangled Parametrization of Measured BRDF with
β
β
β
-VAE
A. Benamira
Sachin Shah
S. Pattanaik
16
3
0
08 Aug 2022
Attri-VAE: attribute-based interpretable representations of medical images with variational autoencoders
Irem Cetin
Maialen Stephens
Oscar Camara
M. A. G. Ballester
DRL
38
39
0
20 Mar 2022
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
31
44
0
17 Mar 2022
Interpretable Molecular Graph Generation via Monotonic Constraints
Yuanqi Du
Xiaojie Guo
Amarda Shehu
Liang Zhao
63
19
0
28 Feb 2022
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement
Xiaoting Shao
Karl Stelzner
Kristian Kersting
CML
DRL
22
3
0
01 Feb 2022
Latte: Cross-framework Python Package for Evaluation of Latent-Based Generative Models
Alon Jacovi
Junyoung Lee
Alexander Lerch
DRL
18
1
0
20 Dec 2021
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OOD
CML
34
21
0
10 Dec 2021
Self-Supervised Learning Disentangled Group Representation as Feature
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
36
67
0
28 Oct 2021
Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes
Karn N. Watcharasupat
Alexander Lerch
23
2
0
11 Oct 2021
A Framework for Learning Ante-hoc Explainable Models via Concepts
Anirban Sarkar
Deepak Vijaykeerthy
Anindya Sarkar
V. Balasubramanian
LRM
BDL
22
46
0
25 Aug 2021
Self-Adversarial Disentangling for Specific Domain Adaptation
Qianyu Zhou
Qiqi Gu
Jiangmiao Pang
Xuequan Lu
Lizhuang Ma
69
49
0
08 Aug 2021
Is Disentanglement enough? On Latent Representations for Controllable Music Generation
Ashis Pati
Alexander Lerch
CoGe
DRL
25
16
0
01 Aug 2021
von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning
Tyler R. Scott
Andrew C. Gallagher
Michael C. Mozer
25
39
0
29 Mar 2021
Generative Adversarial Transformers
Drew A. Hudson
C. L. Zitnick
ViT
25
179
0
01 Mar 2021
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
28
81
0
16 Dec 2020
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
Zongze Wu
Dani Lischinski
Eli Shechtman
DRL
49
482
0
25 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
33
80
0
27 Oct 2020
Multilinear Latent Conditioning for Generating Unseen Attribute Combinations
Markos Georgopoulos
Grigorios G. Chrysos
M. Pantic
Yannis Panagakis
GAN
DRL
16
17
0
09 Sep 2020
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Xiao Liu
Spyridon Thermos
Gabriele Valvano
A. Chartsias
Alison Q. OÑeil
Sotirios A. Tsaftaris
CoGe
DRL
26
18
0
27 Aug 2020
Linear Disentangled Representations and Unsupervised Action Estimation
Matthew Painter
Jonathon S. Hare
Adam Prugel-Bennett
CoGe
DRL
36
20
0
18 Aug 2020
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
24
20
0
28 Jul 2020
Learning Disentangled Representations with Latent Variation Predictability
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
22
26
0
25 Jul 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
48
132
0
21 Jul 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGe
DRL
38
46
0
09 Jun 2020
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie
Tero Karras
Animesh Garg
Shoubhik Debhath
Anjul Patney
Ankit B. Patel
Anima Anandkumar
DRL
89
72
0
06 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
313
0
07 Feb 2020
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
28
136
0
22 Oct 2019
Stochastic Prototype Embeddings
Tyler R. Scott
Karl Ridgeway
Michael C. Mozer
BDL
UQCV
11
14
0
25 Sep 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Kien Do
T. Tran
CoGe
DRL
13
93
0
26 Aug 2019
Demystifying Inter-Class Disentanglement
Aviv Gabbay
Yedid Hoshen
DRL
8
56
0
27 Jun 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OOD
DRL
33
133
0
07 Jun 2019
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRL
CML
CoGe
26
122
0
03 May 2019
Multi-Object Representation Learning with Iterative Variational Inference
Klaus Greff
Raphael Lopez Kaufman
Rishabh Kabra
Nicholas Watters
Christopher P. Burgess
Daniel Zoran
Loic Matthey
M. Botvinick
Alexander Lerchner
OCL
SSL
13
499
0
01 Mar 2019
1