Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05666
Cited By
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks
15 February 2018
J. Uesato
Brendan O'Donoghue
Aaron van den Oord
Pushmeet Kohli
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Risk and the Dangers of Evaluating Against Weak Attacks"
50 / 108 papers shown
Title
Adversarial Visual Robustness by Causal Intervention
Kaihua Tang
Ming Tao
Hanwang Zhang
CML
AAML
19
21
0
17 Jun 2021
Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks
Leo Schwinn
René Raab
A. Nguyen
Dario Zanca
Bjoern M. Eskofier
AAML
14
58
0
21 May 2021
What Clinical Trials Can Teach Us about the Development of More Resilient AI for Cybersecurity
Edmon Begoli
Robert A. Bridges
Sean Oesch
Kathryn Knight
9
1
0
13 May 2021
Adversarial Training is Not Ready for Robot Learning
Mathias Lechner
Ramin Hasani
Radu Grosu
Daniela Rus
T. Henzinger
AAML
24
34
0
15 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
25
268
0
02 Mar 2021
CAP-GAN: Towards Adversarial Robustness with Cycle-consistent Attentional Purification
Mingu Kang
T. Tran
Seungju Cho
Daeyoung Kim
AAML
21
3
0
15 Feb 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Theodoros Tsiligkaridis
Jay Roberts
AAML
9
11
0
22 Dec 2020
Composite Adversarial Attacks
Xiaofeng Mao
YueFeng Chen
Shuhui Wang
Hang Su
Yuan He
Hui Xue
AAML
25
47
0
10 Dec 2020
Data-Dependent Randomized Smoothing
Motasem Alfarra
Adel Bibi
Philip H. S. Torr
Bernard Ghanem
UQCV
23
34
0
08 Dec 2020
Contextual Fusion For Adversarial Robustness
Aiswarya Akumalla
S. Haney
M. Bazhenov
AAML
22
1
0
18 Nov 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
323
0
07 Oct 2020
Adversarial Robustness of Stabilized NeuralODEs Might be from Obfuscated Gradients
Yifei Huang
Yaodong Yu
Hongyang R. Zhang
Yi-An Ma
Yuan Yao
AAML
29
26
0
28 Sep 2020
Certifying Confidence via Randomized Smoothing
Aounon Kumar
Alexander Levine
S. Feizi
Tom Goldstein
UQCV
28
38
0
17 Sep 2020
Stylized Adversarial Defense
Muzammal Naseer
Salman Khan
Munawar Hayat
F. Khan
Fatih Porikli
GAN
AAML
20
16
0
29 Jul 2020
Towards a Theoretical Understanding of the Robustness of Variational Autoencoders
A. Camuto
M. Willetts
Stephen J. Roberts
Chris Holmes
Tom Rainforth
AAML
DRL
21
29
0
14 Jul 2020
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks
Linhai Ma
Liang Liang
AAML
18
18
0
19 May 2020
Towards Understanding the Adversarial Vulnerability of Skeleton-based Action Recognition
Tianhang Zheng
Sheng Liu
Changyou Chen
Junsong Yuan
Baochun Li
K. Ren
AAML
19
17
0
14 May 2020
Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data
Lu Wang
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Yuan Jiang
AAML
24
12
0
11 May 2020
Certifiable Robustness to Adversarial State Uncertainty in Deep Reinforcement Learning
Michael Everett
Bjorn Lutjens
Jonathan P. How
AAML
11
41
0
11 Apr 2020
Breaking certified defenses: Semantic adversarial examples with spoofed robustness certificates
Amin Ghiasi
Ali Shafahi
Tom Goldstein
23
55
0
19 Mar 2020
Lagrangian Decomposition for Neural Network Verification
Rudy Bunel
Alessandro De Palma
Alban Desmaison
Krishnamurthy Dvijotham
Pushmeet Kohli
Philip H. S. Torr
M. P. Kumar
6
50
0
24 Feb 2020
Towards Rapid and Robust Adversarial Training with One-Step Attacks
Leo Schwinn
René Raab
Björn Eskofier
AAML
25
6
0
24 Feb 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
A. Madry
AAML
78
820
0
19 Feb 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
16
482
0
12 Feb 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
40
1,158
0
12 Jan 2020
Enhancing Cross-task Black-Box Transferability of Adversarial Examples with Dispersion Reduction
Yantao Lu
Yunhan Jia
Jianyu Wang
Bai Li
Weiheng Chai
Lawrence Carin
Senem Velipasalar
AAML
16
81
0
22 Nov 2019
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
30
13
0
20 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
13
103
0
13 Nov 2019
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
24
68
0
06 Nov 2019
Enhancing Certifiable Robustness via a Deep Model Ensemble
Huan Zhang
Minhao Cheng
Cho-Jui Hsieh
25
9
0
31 Oct 2019
An Alternative Surrogate Loss for PGD-based Adversarial Testing
Sven Gowal
J. Uesato
Chongli Qin
Po-Sen Huang
Timothy A. Mann
Pushmeet Kohli
AAML
37
88
0
21 Oct 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
22
18
0
27 Sep 2019
Saccader: Improving Accuracy of Hard Attention Models for Vision
Gamaleldin F. Elsayed
Simon Kornblith
Quoc V. Le
VLM
25
70
0
20 Aug 2019
Density estimation in representation space to predict model uncertainty
Tiago Ramalho
M. Corbalan
UQCV
BDL
6
37
0
20 Aug 2019
Evolving Robust Neural Architectures to Defend from Adversarial Attacks
Shashank Kotyan
Danilo Vasconcellos Vargas
OOD
AAML
18
36
0
27 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
22
535
0
09 Jun 2019
Multi-way Encoding for Robustness
Donghyun Kim
Sarah Adel Bargal
Jianming Zhang
Stan Sclaroff
AAML
10
2
0
05 Jun 2019
Certifiably Robust Interpretation in Deep Learning
Alexander Levine
Sahil Singla
S. Feizi
FAtt
AAML
13
63
0
28 May 2019
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
8
77
0
27 May 2019
Adversarial Policies: Attacking Deep Reinforcement Learning
Adam Gleave
Michael Dennis
Cody Wild
Neel Kant
Sergey Levine
Stuart J. Russell
AAML
25
348
0
25 May 2019
What Do Adversarially Robust Models Look At?
Takahiro Itazuri
Yoshihiro Fukuhara
Hirokatsu Kataoka
Shigeo Morishima
11
5
0
19 May 2019
Detecting Overfitting via Adversarial Examples
Roman Werpachowski
András Gyorgy
Csaba Szepesvári
TDI
15
45
0
06 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
28
40
0
03 Mar 2019
Defending Against Universal Perturbations With Shared Adversarial Training
Chaithanya Kumar Mummadi
Thomas Brox
J. H. Metzen
AAML
15
60
0
10 Dec 2018
MMA Training: Direct Input Space Margin Maximization through Adversarial Training
G. Ding
Yash Sharma
Kry Yik-Chau Lui
Ruitong Huang
AAML
16
270
0
06 Dec 2018
Scalable agent alignment via reward modeling: a research direction
Jan Leike
David M. Krueger
Tom Everitt
Miljan Martic
Vishal Maini
Shane Legg
28
392
0
19 Nov 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
11
68
0
13 Nov 2018
Logit Pairing Methods Can Fool Gradient-Based Attacks
Marius Mosbach
Maksym Andriushchenko
T. A. Trost
Matthias Hein
Dietrich Klakow
AAML
17
82
0
29 Oct 2018
Combinatorial Attacks on Binarized Neural Networks
Elias Boutros Khalil
Amrita Gupta
B. Dilkina
AAML
35
40
0
08 Oct 2018
Unrestricted Adversarial Examples
Tom B. Brown
Nicholas Carlini
Chiyuan Zhang
Catherine Olsson
Paul Christiano
Ian Goodfellow
AAML
16
101
0
22 Sep 2018
Previous
1
2
3
Next