ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05822
  4. Cited By
Auto-Encoding Total Correlation Explanation

Auto-Encoding Total Correlation Explanation

16 February 2018
Shuyang Gao
Rob Brekelmans
Greg Ver Steeg
Aram Galstyan
    BDL
    DRL
ArXivPDFHTML

Papers citing "Auto-Encoding Total Correlation Explanation"

22 / 22 papers shown
Title
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
221
10,591
0
17 Feb 2020
Disentangling by Factorising
Disentangling by Factorising
Hyunjik Kim
A. Mnih
CoGe
OOD
44
1,336
0
16 Feb 2018
Independently Controllable Factors
Independently Controllable Factors
Valentin Thomas
Jules Pondard
Emmanuel Bengio
Marc Sarfati
Philippe Beaudoin
Marie-Jean Meurs
Joelle Pineau
Doina Precup
Yoshua Bengio
CML
49
69
0
03 Aug 2017
Unsupervised Learning via Total Correlation Explanation
Unsupervised Learning via Total Correlation Explanation
Greg Ver Steeg
SSL
DRL
LRM
41
16
0
27 Jun 2017
Fast structure learning with modular regularization
Fast structure learning with modular regularization
Greg Ver Steeg
Hrayr Harutyunyan
Daniel Moyer
Aram Galstyan
42
6
0
11 Jun 2017
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
72
442
0
07 Jun 2017
Emergence of Invariance and Disentanglement in Deep Representations
Emergence of Invariance and Disentanglement in Deep Representations
Alessandro Achille
Stefano Soatto
OOD
DRL
69
473
0
05 Jun 2017
Independently Controllable Features
Independently Controllable Features
Emmanuel Bengio
Valentin Thomas
Joelle Pineau
Doina Precup
Yoshua Bengio
DRL
54
67
0
22 Mar 2017
Opening the Black Box of Deep Neural Networks via Information
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
79
1,406
0
02 Mar 2017
Learning Hierarchical Features from Generative Models
Learning Hierarchical Features from Generative Models
Shengjia Zhao
Jiaming Song
Stefano Ermon
BDL
GAN
OOD
DRL
33
74
0
27 Feb 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
86
1,697
0
01 Dec 2016
Anchored Correlation Explanation: Topic Modeling with Minimal Domain
  Knowledge
Anchored Correlation Explanation: Topic Modeling with Minimal Domain Knowledge
Ryan J. Gallagher
Kyle Reing
David C. Kale
Greg Ver Steeg
123
171
0
30 Nov 2016
PixelVAE: A Latent Variable Model for Natural Images
PixelVAE: A Latent Variable Model for Natural Images
Ishaan Gulrajani
Kundan Kumar
Faruk Ahmed
Adrien Ali Taïga
Francesco Visin
David Vazquez
Aaron Courville
DRL
SSL
BDL
62
340
0
15 Nov 2016
Deep Unsupervised Clustering with Gaussian Mixture Variational
  Autoencoders
Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders
Nat Dilokthanakul
P. Mediano
M. Garnelo
M. J. Lee
Hugh Salimbeni
Kai Arulkumaran
Murray Shanahan
DRL
54
651
0
08 Nov 2016
Information Dropout: Learning Optimal Representations Through Noisy
  Computation
Information Dropout: Learning Optimal Representations Through Noisy Computation
Alessandro Achille
Stefano Soatto
OOD
DRL
SSL
47
397
0
04 Nov 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
140
4,224
0
12 Jun 2016
Ladder Variational Autoencoders
Ladder Variational Autoencoders
C. Sønderby
T. Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
BDL
DRL
77
909
0
06 Feb 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
399
2,563
0
25 Jan 2016
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
96
2,251
0
30 Oct 2014
Maximally Informative Hierarchical Representations of High-Dimensional
  Data
Maximally Informative Hierarchical Representations of High-Dimensional Data
Greg Ver Steeg
Aram Galstyan
TPM
42
65
0
27 Oct 2014
Discovering Structure in High-Dimensional Data Through Correlation
  Explanation
Discovering Structure in High-Dimensional Data Through Correlation Explanation
Greg Ver Steeg
Aram Galstyan
CML
54
99
0
04 Jun 2014
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
184
12,384
0
24 Jun 2012
1