ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06014
  4. Cited By
Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and
  Theoretical Analysis

Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis

16 February 2018
P. Xie
Wei Wu
Yichen Zhu
Eric Xing
ArXiv (abs)PDFHTML

Papers citing "Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis"

6 / 6 papers shown
Title
Disentangled Representation with Causal Constraints for Counterfactual
  Fairness
Disentangled Representation with Causal Constraints for Counterfactual Fairness
Ziqi Xu
Jixue Liu
Debo Cheng
Jiuyong Li
Lin Liu
Ke Wang
FaMLOODCML
155
7
0
19 Aug 2022
Semi-Supervised Metric Learning: A Deep Resurrection
Semi-Supervised Metric Learning: A Deep Resurrection
U. Dutta
Mehrtash Harandi
C. Sekhar
44
7
0
10 May 2021
Affinity guided Geometric Semi-Supervised Metric Learning
Affinity guided Geometric Semi-Supervised Metric Learning
U. Dutta
Mehrtash Harandi
C. Sekhar
104
2
0
27 Feb 2020
A Probabilistic approach for Learning Embeddings without Supervision
A Probabilistic approach for Learning Embeddings without Supervision
U. Dutta
Mehrtash Harandi
C. Sekhar
SSL
84
0
0
17 Dec 2019
Regularizing Neural Networks via Minimizing Hyperspherical Energy
Regularizing Neural Networks via Minimizing Hyperspherical Energy
Rongmei Lin
Weiyang Liu
Zhen Liu
Chen Feng
Zhiding Yu
James M. Rehg
Li Xiong
Le Song
105
39
0
12 Jun 2019
Learning towards Minimum Hyperspherical Energy
Learning towards Minimum Hyperspherical Energy
Weiyang Liu
Rongmei Lin
Ziqiang Liu
Lixin Liu
Zhiding Yu
Bo Dai
Le Song
137
151
0
23 May 2018
1