ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.06153
  4. Cited By
A Likelihood-Free Inference Framework for Population Genetic Data using
  Exchangeable Neural Networks
v1v2 (latest)

A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks

16 February 2018
Jeffrey Chan
Valerio Perrone
J. Spence
Paul A. Jenkins
Sara Mathieson
Yun S. Song
ArXiv (abs)PDFHTML

Papers citing "A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks"

29 / 29 papers shown
Title
Simulation-Based Inference: A Practical Guide
Simulation-Based Inference: A Practical Guide
Michael Deistler
Jan Boelts
Peter Steinbach
Guy Moss
Thomas Moreau
...
Benjamin Kurt Miller
P. J. Gonçalves
Jan-Matthis Lueckmann
Cornelius Schroder
Jakob H Macke
184
4
0
18 Aug 2025
JIR-Arena: The First Benchmark Dataset for Just-in-time Information Recommendation
JIR-Arena: The First Benchmark Dataset for Just-in-time Information Recommendation
Ke Yang
Kevin Ros
Shankar Kumar Senthil Kumar
ChengXiang Zhai
167
0
0
19 May 2025
Robust Simulation-Based Inference under Missing Data via Neural ProcessesInternational Conference on Learning Representations (ICLR), 2025
Yogesh Verma
Ayush Bharti
Vikas Garg
221
4
0
03 Mar 2025
Compositional simulation-based inference for time series
Compositional simulation-based inference for time seriesInternational Conference on Learning Representations (ICLR), 2024
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
370
8
0
05 Nov 2024
Constructing Ancestral Recombination Graphs through Reinforcement
  Learning
Constructing Ancestral Recombination Graphs through Reinforcement Learning
Mélanie Raymond
Marie-Hélène Descary
Cédric Beaulac
Fabrice Larribe
109
1
0
17 Jun 2024
Addressing Misspecification in Simulation-based Inference through Data-driven Calibration
Addressing Misspecification in Simulation-based Inference through Data-driven Calibration
Antoine Wehenkel
Juan L. Gamella
Ozan Sener
Jens Behrmann
Guillermo Sapiro
Marco Cuturi
J. Jacobsen
UQLM
505
22
0
14 May 2024
All-in-one simulation-based inference
All-in-one simulation-based inference
Manuel Gloeckler
Michael Deistler
Christian D. Weilbach
Frank Wood
Jakob H. Macke
366
58
0
15 Apr 2024
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based
  Inference
Fuse It or Lose It: Deep Fusion for Multimodal Simulation-Based Inference
Marvin Schmitt
Stefan T. Radev
Paul-Christian Bürkner
353
6
0
17 Nov 2023
Spatial Bayesian Neural Networks
Spatial Bayesian Neural Networks
A. Zammit‐Mangion
Michael D. Kaminski
Ba-Hien Tran
Maurizio Filippone
Noel Cressie
BDL
211
12
0
16 Nov 2023
Sensitivity-Aware Amortized Bayesian Inference
Sensitivity-Aware Amortized Bayesian Inference
Lasse Elsemüller
Hans Olischläger
Marvin Schmitt
Paul-Christian Bürkner
Ullrich Kothe
Stefan T. Radev
558
17
0
17 Oct 2023
Towards Data-Conditional Simulation for ABC Inference in Stochastic
  Differential Equations
Towards Data-Conditional Simulation for ABC Inference in Stochastic Differential EquationsBayesian Analysis (Bayes. Anal.), 2023
P. Jovanovski
Andrew Golightly
Umberto Picchini
201
3
0
16 Oct 2023
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
1.0K
23
0
04 Oct 2023
Neural Bayes estimators for censored inference with peaks-over-threshold
  models
Neural Bayes estimators for censored inference with peaks-over-threshold models
J. Richards
Matthew Sainsbury-Dale
A. Zammit‐Mangion
Raphael Huser
678
10
0
27 Jun 2023
Learning Robust Statistics for Simulation-based Inference under Model
  Misspecification
Learning Robust Statistics for Simulation-based Inference under Model MisspecificationNeural Information Processing Systems (NeurIPS), 2023
Daolang Huang
Ayush Bharti
Amauri Souza
Luigi Acerbi
Samuel Kaski
398
50
0
25 May 2023
Simultaneous identification of models and parameters of scientific
  simulators
Simultaneous identification of models and parameters of scientific simulatorsInternational Conference on Machine Learning (ICML), 2023
Cornelius Schroder
Jakob H. Macke
261
8
0
24 May 2023
Adversarial robustness of amortized Bayesian inference
Adversarial robustness of amortized Bayesian inferenceInternational Conference on Machine Learning (ICML), 2023
Manuel Glöckler
Michael Deistler
Jakob H. Macke
AAML
239
18
0
24 May 2023
Robust Neural Posterior Estimation and Statistical Model Criticism
Robust Neural Posterior Estimation and Statistical Model CriticismNeural Information Processing Systems (NeurIPS), 2022
Daniel Ward
Patrick W Cannon
Mark Beaumont
Matteo Fasiolo
Sebastian M. Schmon
214
50
0
12 Oct 2022
Contrastive Neural Ratio Estimation for Simulation-based Inference
Contrastive Neural Ratio Estimation for Simulation-based Inference
Benjamin Kurt Miller
Christoph Weniger
Patrick Forré
321
15
0
11 Oct 2022
Compositional Score Modeling for Simulation-based Inference
Compositional Score Modeling for Simulation-based InferenceInternational Conference on Machine Learning (ICML), 2022
Tomas Geffner
George Papamakarios
A. Mnih
359
40
0
28 Sep 2022
Likelihood-Free Parameter Estimation with Neural Bayes Estimators
Likelihood-Free Parameter Estimation with Neural Bayes EstimatorsAmerican Statistician (Am. Stat.), 2022
Matthew Sainsbury-Dale
A. Zammit‐Mangion
Raphael Huser
554
50
0
27 Aug 2022
Probabilistic Conformal Prediction Using Conditional Random Samples
Probabilistic Conformal Prediction Using Conditional Random SamplesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Zhendong Wang
Ruijiang Gao
Mingzhang Yin
Mingyuan Zhou
David M. Blei
TPM
287
35
0
14 Jun 2022
Transformers Can Do Bayesian Inference
Transformers Can Do Bayesian InferenceInternational Conference on Learning Representations (ICLR), 2021
Samuel G. Müller
Noah Hollmann
Sebastian Pineda Arango
Josif Grabocka
Katharina Eggensperger
BDLUQCV
844
232
0
20 Dec 2021
Unifying Likelihood-free Inference with Black-box Optimization and
  Beyond
Unifying Likelihood-free Inference with Black-box Optimization and Beyond
Dinghuai Zhang
Jie Fu
Yoshua Bengio
Aaron Courville
278
15
0
06 Oct 2021
Benchmarking Simulation-Based Inference
Benchmarking Simulation-Based InferenceInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Jan-Matthis Lueckmann
Jan Boelts
David S. Greenberg
P. J. Gonçalves
Jakob H. Macke
385
228
0
12 Jan 2021
Representing and Denoising Wearable ECG Recordings
Representing and Denoising Wearable ECG Recordings
J. Chan
Andrew C. Miller
E. Fox
81
3
0
30 Nov 2020
Neural Approximate Sufficient Statistics for Implicit Models
Neural Approximate Sufficient Statistics for Implicit ModelsInternational Conference on Learning Representations (ICLR), 2020
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
542
95
0
20 Oct 2020
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDLDRL
191
51
0
29 Oct 2019
Automatic Posterior Transformation for Likelihood-Free Inference
Automatic Posterior Transformation for Likelihood-Free InferenceInternational Conference on Machine Learning (ICML), 2019
David S. Greenberg
M. Nonnenmacher
Jakob H. Macke
530
381
0
17 May 2019
Partially Exchangeable Networks and Architectures for Learning Summary
  Statistics in Approximate Bayesian Computation
Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation
Samuel Wiqvist
Pierre-Alexandre Mattei
Umberto Picchini
J. Frellsen
BDL
266
35
0
29 Jan 2019
1